Hülsenfrüchtler

Hülsenfrüchtler
Zottige Wicke (Vicia villosa), Blüten und unreife Hülse

Zottige Wicke (Vicia villosa), Blüten und unreife Hülse

Systematik
Eudikotyledonen
Kerneudikotyledonen
Rosiden
Eurosiden I
Ordnung: Schmetterlingsblütenartige (Fabales)
Familie: Hülsenfrüchtler
Wissenschaftlicher Name
Fabaceae
Lindl.
Mit Stacheln bewehrter Stamm von Erythrina sandwicensis
Illustration von Senna timoriensis

Die Hülsenfrüchtler (Fabaceae oder Leguminosae; früher: Papilionaceae), auch Leguminosen genannt, sind eine der artenreichsten Pflanzenfamilien und gehören zur Ordnung der Schmetterlingsblütenartigen (Fabales). Sie umfasst drei Unterfamilien, die oft auch als eigene Familien behandelt werden, und weitere Tribus, mit insgesamt etwa 730 Gattungen und fast 20.000 Arten - mit der größten Gattung innerhalb der Gefäßpflanzen: Astragalus mit etwa 2000 Arten. Der Ursprung der Familie wird in der späten Kreidezeit (65 bis 70 Millionen Jahre vor Heute) vermutet.
Die Hülsenfrüchtler sind eine von wenigen Familien, die zwei gültige, alternativ verwendbare wissenschaftliche Namen besitzt: Der Name Leguminosae wurde von Michel Adanson im Jahr 1763 geschaffen. Erst 1836 wurde von John Lindley der neue Name Fabaceae gebildet. Der nomenklatorische Typus zu beiden Namen ist die Gattung Faba Miller, ein Synonym von Vicia L..

Beschreibung

Erscheinungsbild

Es sind zum Einen ein- bis zweijährige, oder ausdauernde krautige Pflanzen oder zum Anderen verholzende Pflanzen: Bäume, Sträucher und Lianen. Sie wachsen selbstständig aufrecht, kriechend oder kletternd. Bei einer ganzen Reihe von Arten oder Sorten der Kulturpflanzen führen die Sprossachsen kreisende Bewegungen meist in, seltener gegen den Uhrzeigersinn aus; es sind windende Pflanzen, die an anderen Pflanzen oder Gegenständen empor klettern. Einige Arten sind Epiphyten. Einige Arten besitzen xerophytische Anpassungen. Die Pflanzen können mit Stacheln oder Dornen bewehrt sein.

Laubblätter und Nebenblätter

Die meist wechselständigen Laubblätter sind meist gefiedert. Bei allen Unterfamilien sind ursprünglich Fiederblätter vorhanden, die in einigen Gattungen und Arten auf die Endfieder reduziert sein können, wie beispielsweise beim Färber-Ginster (Genista tinctoria), oder nur aus drei Blättchen bestehen, wie bei den Klee-Arten (Trifolium). Sie können sehr unterschiedlich groß sein.

Bei manchen Arten sind die Fiederblätter völlig oder bei vielen Arten teilweise zu Ranken umgebildet; meist werden die Ranken nur von der Endfieder gebildet. Wenn die Endfieder zu einer Ranke umgebildet ist oder fehlt, nennt man das paarig gefiedert und wenn die Endfieder normal ausgebildet, nennt man das unpaarig gefiedert. Bei den Cercideae sind die Blätter einfach.

Es sind Nebenblätter vorhanden, die je nach Art sehr unterschiedlich ausgeprägt sein können. Die Nebenblätter können wie bei der Robinie (Robinia pseudoacacia) zu Dornen („Nebenblattdornen“) umgebildet sein, oder sie sind wie beispielsweise bei der Ranken-Platterbse (Lathyrus aphaca) besonders groß und übernehmen die Hauptassimilationsfunktion, da die eigentlichen Blattorgane zu Ranken umgebildet sind. Einige Arten besitzen eine verdickte Stelle im unteren Teil des Nebenblattes, die Bewegungen bewirken kann („Pulvinus“).

Bei einigen Arten sind die Blätter reduziert und Phyllodien übernehmen die Aufgabe der Photosynthese.

Blütenstände und Blüten

Die Blüten können in traubigen, ährigen, rispigen, wickelförmigen oder kopfigen Blütenständen zusammen stehen.

Die meist zwittrigen, radiärsymmetrischen bis zygomorphen Blüten sind meist fünfzählig mit doppeltem Perianth. Besonders bei den Mimosoideae kommen auch einhäusig getrenntgeschlechtige (monözische) Arten vor. Die meist fünf (drei bis sechs) Kelchblätter sind verwachsen. Besonders im Bau der Blüten unterscheiden sich die Unterfamilien.

In der Knospenlage besitzen die Kronblätter Faboideae eine absteigende Deckung, aber bei den Caesalpinioideae mit aufsteigender Deckung. Es sind meist fünf (ein bis fünf) Kronblätter vorhanden; mindestens drei Kronblätter sind untereinander frei. Die typischen Schmetterlingsblüten, es geht um die Blütenkrone, entsteht durch die Ausformung der meist fünf Blütenkronblätter. Das obere, meist aufgerichtete Kronblatt nennt man Fahne („Vexillum“), die beiden seitlichen nennt man Flügel („Alae“), die beiden unteren schließlich sind mehr oder weniger stark verwachsen oder verklebt und bilden das Schiffchen („Carina“). Die Kronblätter können genagelt sein. Nur bei 26 Gattungen der Caesalpinioideae, einigen Gattungen der Swartzieae und Amorphieae fehlen Blütenhüllblätter, dann sind die Staubblätter am auffälligsten und es dienen bei ihnen meist Fledertiere als Bestäuber.

Wenn zehn Staubblätter vorhanden sind, dann sind sie bei den Faboideae meist alle oder nur zu neunt verwachsen und bilden eine lange Röhre (bzw. Rinne bei 9 verwachsenen), die das Fruchtblatt umgibt; oder die Staubblätter sind untereinander frei (Sophora). Bei den Mimosoideae sind drei bis hundert Staubblätter vorhanden. Selten sind nur ein oder zwei Staubblätter vorhanden. Bei wenigen Taxa sind die Staubblätter mit den Kronblättern verwachsen. Entweder sind alle Staubblätter fertil oder ein Teil ist zu Staminodien umgewandelt. Die Pollenkörner besitzen meist drei oder sechs, seltener zwei, vier oder keine Aperturen; sie sind meist colporat, oder seltener porat, colpat, oder rugat; sie sind fast immer zweizellig oder bei wenigen Mimosoideae dreizellig. In jeder Blüte gibt es meist nur ein oberständiges Fruchtblatt; bei wenigen Mimosoideae sind zwei bis 16 freie Fruchtblätter vorhanden.

Die Bestäubung erfolgt durch Insekten (Entomophilie), Vögel (Ornithophilie, besonders bei südaustralischen Arten) oder Fledertiere (Chiropterophilie). Die Übertragungsmechanismen des Pollens auf Insekten bei der Bestäubung sind bei vielen Arten sehr interessant, es gibt beispielsweise einen „Explosionsmechanismus“ (Besenginster, Cytisus scoparius) oder „Klappmechanismus“ (Färberginster, Genista tinctoria).

Früchte und Samen

Die Hülsenfrüchtler haben ihren Namen von der „Hülsenfrucht“, einem Fruchttyp, der in allen Unterfamilien und nur hier vorkommt. Es wird eine Hülsenfrucht gebildet, die sich bei Reife meist an der Bauch- und Rückennaht öffnet. Seltener werden auch Gliederhülsen mit Bruchfrüchten (Kleiner Vogelfuß, Ornithopus perpusillus), die sich zu Nüsschen entwickeln, ausgebildet. Einige Taxa bilden auch Balgfrüchte, Samara, achänen- oder steinfruchtähnliche Früchte. Bei einigen Mimosoideae können auch mehrere Früchte zu einer Sammelfrucht vereint sein. Die Früchte enthalten ein bis hundert Samen. Die kleinen bis sehr großen Samen sind meist ungeflügelt oder besitzen selten, wie bei einigen Mimosoideae, Flügel. Die stärkehaltigen oder -freien Samen können eine Mikropyle besitzen, die zickzackförmig sein kann.

Symbiose mit Bakterien und Pilzen

Wurzelknöllchen bei Leguminosen

Die meisten Leguminosen gehen in ihren Wurzelknöllchen eine Symbiose mit stickstofffixierenden Bakterien (Rhizobien) ein. Sie machen sich dadurch unabhängig vom Nitratgehalt des Bodens und sind in extrem stickstoffarmen Böden (zum Beispiel Akazien in der „Wüste“) erst lebensfähig. Zum Schutz der Bakterien vor Luftsauerstoff sind Leguminosen in der Lage, das Sauerstoff-bindende Protein Leghämoglobin zu bilden.

Durch ihre Rhizobien tragen Leguminosen zur Fruchtbarkeit des Bodens bei (siehe Gründüngung). In der Landwirtschaft werden sie daher gern zur Melioration als Zwischenfrüchte angebaut. Die Stickstofffixierung kann 100 kg/ha pro Monat erreichen.

In Gesellschaft mit Phaseolus vulgaris wurde ein Pilz entdeckt, der Insekten befällt und deren Stickstoff an die Pflanze weitergibt.[1]

Inhaltsstoffe

Leguminosen sind sehr nährstoffreiche Pflanzen, die reichlich Protein, Vitamine und Mineralstoffe, aber auch antinutrive Stoffe beinhalten. Die antinutriven Inhaltsstoffe sind der Grund, warum Leguminosen in der Regel durch Kochen und/oder Keimen verarbeitet werden müssen.[2]

In den Samen vieler Arten der Fabaceae kommen sogenannte Lektine, das sind hier Glykoproteine vor, diese können mit Kohlenhydratgruppen von Glykolipiden oder Glykoproteinen auf Zelloberflächen spezifische Bindungen eingehen, ähnlich wie Antigen-Antikörper-Reaktionen. Die Reaktion kann blutgruppen-spezifisch erfolgen. Verbreitet kommen toxische Lektine vor, die sind beispielsweise bei Phaseolus für die Giftigkeit roher Früchte verantwortlich.

Häufig sind Alkaloide enthalten. Als Fraßschutz sind Chinolizidin-Alkaloide vorhanden; bei sogenannten „Süß-Lupinen“ wurde sie durch Züchtung entfernt und können als Futtermittel angebaut werden. Auch andere cyanogene Verbindungen dienen als Fraßschutz.

Auch Saponine stellen eine wichtige Inhaltsstoffgruppe dar. Flavonole können vorhanden sein.

Bedeutung als Nutzpflanzen

Aufgrund ihres hohen Eiweißgehaltes (Legumin) und der großen Erträge auf kleinen Flächen sind Früchte und Samen der Hülsenfrüchtler fast weltweit ein wichtiger Bestandteil der menschlichen Ernährung. Insbesondere bei fleischarmer oder vegetarischer Kost sind sie fast unverzichtbar. Beispiele sind etwa Erbsen, Kichererbsen, Bohnen, Azukibohnen, Limabohnen und Linsen, die zur Unterfamilie der Schmetterlingsblütler (Faboideae) gehören. Oft werden nur die Samen gegessen und umgangssprachlich werden dann die Samen – pars pro toto – meist „Hülsenfrüchte“ genannt. Bei beispielsweise grünen Bohnen und Zuckererbsen werden die Früchte gegessen. Einige Hülsenfrüchte können auch roh gegessen werden (zum Beispiel Zuckererbsen), viele sind im rohen Zustand aber gesundheitsschädlich und müssen vor dem Verzehr unbedingt eingeweicht und vollständig durchgegart werden.

Die für die Ernährung wichtigsten Hülsenfrüchte mit ihrer mittleren chemischen Zusammensetzung von Nährstoffen (in Prozent).
Fruchtart Wasser Proteine Fette Kohlenhydrate
Bohnen (grün) 82–90 2,5–6 0,3 6,5–8,5
Bohnen (reif) 11–14 24–26 1,5–2 47–55
Erbsen (grün) 80 2,5–6,5 0,5 4–12,5
Erbsen (reif) 14 23 2 53
Kichererbsen 20,5 4,8 61
Linsen 12 26 2 53
Sojabohnen 10 34 19 27
Erdnüsse 2 24 50 22
Lupinen 15 38 4 25

Hülsenfrüchte enthalten neben den Eiweißen außerdem Kohlenhydrate, unter denen einige Mehrfachzucker, die für den Menschen unverdaulich sind und deswegen die bekannten Blähungen verursachen.

Leguminosen werden auch in der Landwirtschaft verbreitet als Futtermittel für Wiederkäuer und Schweine eingesetzt.

Viele Arten liefern tropische Hölzer (Palisanderholz: Dalbergia- und Machaerium-Arten, Sophora-Arten). Als Forstpflanze in den gemäßigten Zonen angepflanzt wurde die Robinie und ist verwildert. Viele Arten und ihre Sorten werden als Zierpflanzen verwendet.

Die medizinische Wirkung wurde bei vielen Arten untersucht.

Systematik

Die Familie umfasst etwa 730 Gattungen und fast 20.000 Arten. Sie wird in drei Unterfamilien und etwa 35 Tribus gegliedert [3] (Gattungen siehe Unterfamilien und Tribus):

  • Schmetterlingsblütler (Faboideae): Mit 28 Tribus, etwa 476 Gattungen und etwa 13855 Arten. Sie besitzen die typischen, zygomorphen Schmetterlingsblüten.
  • Abreae
  • Amorpheae
  • Bossiaeeae
  • Brongniartieae
  • Cicereae
  • Crotalarieae
  • Dalbergieae
  • Mimosengewächse (Mimosoideae): Mit drei Tribus, etwa 82 Gattungen und etwa 3275 Arten. Die Blüten sind meist radiärsymmetrisch.
  • Acacieae
  • Ingeae
  • Mimoseae
  • Johannisbrotgewächse (Caesalpinioideae): Mit etwa 140 Gattungen und über 1000 verholzenden Arten. Die Blüten sind meist zygomorph:
  • Caesalpinieae
  • Cassieae
  • Heute werden wenige Tribus keiner der drei Unterfamilien zugeordnet:
    • Tribus Cercideae mit vier bis zwölf Gattungen und etwa 265 Arten (früher der Unterfamilie Caesalpinioideae).
    • Tribus Detarieae: Mit etwa 22 Gattungen und etwa 750 Arten. Sie enthalten Tannine und Terpenoide und bilden meist Harze. [4]

Die Forschungsarbeiten diesen Jahrzehntes zeigen, dass noch mehr Gruppen aus den Unterfamilien ausgegliedert werden müssen, damit die Unterfamilien monophyletisch werden. Dabei scheint wohl die Unterfamilie Faboideae in ihrem heutigen Umfang monophyletisch zu sein. Die Tribus Cassieae s.l. ist polyphyletisch. Die Unterfamilie Caesalpinioideae ist weitgehend aufgelöst. [5]

Synonyme der Familie Fabaceae Lindl. sind: Acaciaceae E.Mey., Aspalathaceae Martinov, Astragalaceae Bercht. & J.Presl, Caesalpiniaceae R.Br., nom. cons., Cassiaceae Vest, Ceratoniaceae Link, Detariaceae (DC.) Hess, Hedysaraceae Oken, Inocarpaceae Zoll., Leguminosae Adans., nom. cons., Mimosaceae R.Br., nom. cons., Papilionaceae Giseke, nom. cons., Phaseolaceae Schnitzl., Swartziaceae (DC.) Bartl., Viciaceae Bercht. & J.Presl.. [3]

Siehe auch

Quellen

Einzelnachweise

  1. S. W. Behie, P. M. Zelisko, M. J. Bidochka: Endophytic Insect-Parasitic Fungi Translocate Nitrogen Directly from Insects to Plants. In: Science. 336, 2012, S. 1576–1577, doi:10.1126/science.1222289.
  2. Nutritive und antinutritive Inhaltsstoffe der Leguminosen, zuletzt eingesehen Sept. 2009
  3. 3,0 3,1 Eintrag bei GRIN.
  4. Martin F. Wojciechowski & Johanna Mahn: Detarieae sensu lato: Eintrag beim Tree of Life-Projekt, 2006. (engl.)
  5. Martin F. Wojciechowski, Johanna Mahn & Bruce Jones: Fabaceae - Legumes: Eintrag beim Tree of Life-Projekt, 2006. (engl.)

Weblinks

 Commons: Hülsenfrüchtler – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

Wiktionary Wiktionary: Hülsenfrüchtler – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Die News der letzten Tage

16.08.2022
Parasitologie | Insektenkunde
Fächerflügler kennen keinen Schmerz
Ein Forschungsteam hat untersucht, wie weibliche Fächerflügler das Trauma der Paarung überstehen.
12.08.2022
Taxonomie
Eine neue Orchideenart aus den Bergen Tansanias
Der Bayreuther Biologe Andreas Hemp hat im Nordosten Tansanias eine bisher unbekannte Orchideenart der Gattung Rhipidoglossum entdeckt.
11.08.2022
Biodiversität | Insektenkunde | Land-, Forst- und Viehwirtschaft
Wie die Biodiversität in Weinbergen am besten gefördert wird
Forschende haben untersucht, wie sich eine biologische, biodynamische und konventionelle Bewirtschaftung in Weinbergen auf die Insektenfauna auswirkt.
11.08.2022
Ökologie | Säugetierkunde
Worin unterscheidet sich eine Stadtfledermaus von einer Landfledermaus?
Manche Fledermausarten kommen eher in Städten als auf dem Land vor.
10.08.2022
Ethologie | Säugetierkunde
Seehunden über die Schulter schauen
Wo finden Seehunde ihre Nahrung?
10.08.2022
Ethologie | Biodiversität
Der soziale Faktor der Tierwanderungen
Eine breite Spanne an Tierarten begibt sich auf große Wanderschaft – von kleinsten Insekten bis hin zu den größten Meeressäugetieren unseres Planeten.
10.08.2022
Mykologie | Genetik | Land-, Forst- und Viehwirtschaft
Wie ein Schadpilz seine Wirtspflanze wehrlos macht
Der Pilz Ustilago maydis befällt Mais und kann seinen Wirt erheblich schädigen.
09.08.2022
Biodiversität
Ursachen für die Vielfalt von Baumarten erforscht
Die Anzahl der in den äquatornahen Regionen wachsenden Baumarten ist signifikant höher als in den weiter nördlichen und südlichen Regionen der Erde.
09.08.2022
Evolution
Spurensuche: Abstammungslinien von Pseudoskorpionen
Die tropischen Wälder der Westghats, einer riesigen Gebirgskette in Westindien, sind die Heimat vieler diverser, insbesondere endemischer Arten.
09.08.2022
Neurobiologie
Können Springspinnen träumen?
Die Konstanzer Biologin Dr.
09.08.2022
Ökologie | Paläontologie | Primatologie
Neues von Orang-Utans und ihren ausgestorbenen Vorfahren
Ökologische Kontinuität zwischen Orang-Utans und ausgestorbenen Vorfahren zeigt Abhängigkeit von intakten Regenwäldern.
04.08.2022
Taxonomie
Neue Spinnengattung nach David Bowie benannt
Der bekannte Spinnenforscher Peter Jäger hat eine neue Gattung aus der Familie der Kammspinnen nach dem verstorbenen Popmusiker David Bowie benannt.
03.08.2022
Mikrobiologie | Toxikologie
Wie bakterielle Toxine bei tödlichen Angriffen wirken
Von Bakterien gebildete Toxine sind schädliche und oft tödliche Substanzen, sie treffen den Wirtsorganismus, wo es am meisten weh tut und fördern Infektionen und Krankheiten.
29.07.2022
Ethologie | Evolution | Primatologie
Kommunikation erleichtert den Schimpansen die Jagd
Ähnlich wie Menschen nutzen Schimpansen Kommunikation, um ihr kooperatives Verhalten zu koordinieren – etwa bei der Jagd.
29.07.2022
Meeresbiologie
Bestäubung durch Krebstiere
Biene des Meeres: Eine kleine Meerassel hilft bei der Befruchtung von Rotalgen.
22.07.2022
Anthropologie | Physiologie | Immunologie
Ekelerregende Videos mit Krankheitsbezug lösen Immunantwort aus
Personen, die mit krankheitsbezogenen ekelerregenden Videos konfrontiert werden, weisen eine erhöhte Konzentration der Antikörper Immunglobulin A im Speichel auf.