Rekombination

Unter Rekombination versteht man in der Biologie die Verteilung und Neuanordnung von genetischem Material (DNA, RNA) in den Zellen und im engeren Sinne den Austausch von Allelen. Durch Rekombination kommt es zu neuen Gen- und Merkmalskombinationen. Rekombination und Mutation verursachen die genetische Variabilität innerhalb einer Population. Die genetische Variabilität ist wiederum die Basis für die Anpassung an wechselnde Umweltbedingungen im Evolutionsprozess. Bei genetischen Algorithmen wird die Rekombination als genetischer Operator nachgeahmt, um Optimierungsprobleme zu lösen (siehe Rekombination (genetischer Algorithmus)).

Rekombination durch sexuelle Prozesse

Die sexuelle Rekombination betrifft bei Eukaryoten, z. B. bei Pflanzen und Tieren, das gesamte Genom und ist damit die tiefgreifendste Form der Rekombination. Hierbei kann man zwei Rekombinationstypen unterscheiden:

  • Interchromosomale Rekombination, durch Neukombination ganzer Chromosomen.
  • Intrachromosomale Rekombination, durch Neukombination von Allelen innerhalb von Chromosomen durch Crossing-over in der 1. Reifeteilung.

Bei der interchromosomalen Rekombination lassen sich zwei Phasen unterscheiden:

  1. Die Verteilung der Chromosomen bei der Keimzellenbildung in der Meiose.
  2. Die Verschmelzung der (im Normalfall) haploiden Keimzellen zur diploiden Zygote.

Die Anzahl interchromosomaler Rekombinationsmöglichkeiten ist von der Anzahl der Chromosomen abhängig. Der Mensch mit seinen 23 Chromosomenpaaren kann z. B. 223 (8,39 Millionen) verschiedene Keimzellen ausbilden. Da bei der Befruchtung zwei Geschlechtszellen miteinander verschmelzen, ergeben sich damit für die Nachkommenschaft eines Menschenpaares gemäß der Gregor Mendel´schen Kombinatorik (223 · (223+1))/2 ≈ 3,5·1013 (35 Billionen) Kombinationsmöglichkeiten. Zwei genetisch identische Nachkommen zu zeugen ist, außer bei eineiigen Mehrlingen, somit einem Menschenpaar alleine durch die interchromosomale Rekombination nahezu unmöglich.

Rekombination durch parasexuelle Prozesse

Parasexualität tritt bei Bakterien und einigen Pilzen auf. Dabei findet entweder ein Transfer von Teilen des Genoms statt, oder es fusionieren Zellen, die auf nichtgeschlechtlichem Weg entstanden sind (vegetative Zellen). Ein Transfer von Genomteilen kann durch folgende Prozesse stattfinden:

  • Konjugation, einem direkten Transfer genetischen Materials zwischen zwei miteinander verbundenen Zellen.
  • Transduktion, einem Transfer mit Hilfe von Viren.
  • Transformation, durch Aufnahme und Integration von extrazellulärer DNA in das Genom einer Zelle.

Somatische Rekombination

Bei Eukaryoten ist Rekombination nicht auf die Meiose und die Keimzellen beschränkt. Auch in somatischen Zellen kann es zu einer DNA-Umgruppierung („DNA-Rearrangement“) kommen. Dieses wirkt sich auf die Genexpression aus. Als Beispiele seien Transposons („springende Gene“) und die somatische Rekombination der Immunglobuline genannt, siehe V(D)J-Rekombination.

Homologe und nicht homologe Rekombination

Wildtyp der Physcomitrella patens und daraus hergestellte knockout-Moose. Abweichende Phänotypen in knockout-Mutanten. Wildtyp und transformierte Pflanzen wurden auf Minimalmedium (Knop Medium) angezogen, um Differenzierung und Gametophoren zu induzieren. Je Pflanze ist eine Übersicht (obere Reihe, Größenbalken: 1 mm) und eine Nahaufnahme (untere Reihe, Größenbalken: 0.5 mm) gezeigt. A: haploide Wildtyp-Moospflanze, die komplett mit Gametophoren bedeckt ist, sowie eine Nahaufnahme eines Blättchens. B-D: verschiedene Mutanten. [1]

Homologe Rekombination

Die homologe Rekombination (HR) tritt bei allen Organismen auf. Voraussetzung sind homologe, doppelsträngige DNA-Abschnitte. Homolog heißt, dass es große Ähnlichkeiten in der Nucleotidsequenz gibt. Bei Doppelstrangbrüchen kann durch homologe Rekombination der Schaden ausgebessert werden, indem die Informationen auf dem unbeschädigten Chromatid als Vorlage genutzt wird. HR ist also ein Werkzeug der Zelle, um Genmutationen zu reparieren. Homologe Rekombinationen laufen meist nach folgendem Schema ab:

  1. Parallele Annäherung („Paarung“) zweier doppelsträngiger DNA-Moleküle, so dass die Bereiche ähnlicher (homologer) Nucleotidsequenzen auf gleicher Höhe liegen.
  2. In einem komplexen Vorgang kann es nun zu einem Crossing-over kommen. Dabei werden DNA-Abschnitte zwischen den beiden „gepaarten“ DNA-Molekülen ausgetauscht.
  3. Die Stelle, an der die ausgetauschten DNA-Abschnitte neu verknüpft werden, kann irgendwo innerhalb der homologen Nukleotidsequenzen liegen.
  4. Der Bruch und die Wiederverbindung der DNA-Moleküle erfolgt durch spezifische Enzyme, die sog. Rekombinasen, so präzise, dass kein Nucleotid verloren geht oder dazukommt.

Im Verlauf der HR tritt die sogenannte Holliday-Struktur auf.

Das Verhältnis von Homologer Rekombination (HR) zu Nichthomologer Rekombination kann in verschiedenen Spezies um mehrere Größenordnungen variieren. So gibt es innerhalb der Pflanzen vor allem beim Laubmoos Physcomitrella patens eine so hohe HR-Rate, dass Gene gezielt ausgeschaltet werden können, um so ihre Funktion zu analysieren [2]. Diese Technik nennt man Gene-Targeting „(englisch gene targeting)“, den methodischen Ansatz nennt man „Reverse Genetik“.

Sequenzspezifische Rekombination

Eine gezielte (also nicht zufällige) Integration von DNA in ein Genom kann auch noch durch die sequenzielle Rekombination erfolgen. Diese nicht homologe Rekombination wird durch ein Enzym bewerkstelligt, wie es z. B. vom Bakteriophagen λ kodiert wird, die sogenannte Integrase. Die Integrase bringt zwei nicht homologe Sequenzen zweier DNA-Moleküle zusammen, katalysiert deren Spaltung und verbindet sie miteinander. So kann etwa ein Virengenom an einem vorgesehenen Ort in ein Chromosom eingebaut werden.

Rekombination in der Gentechnik

In der Gentechnik stehen heute Werkzeuge zur Verfügung, mit deren Hilfe rekombinante DNA künstlich hergestellt und in Organismen eingeschleust werden kann. Dazu wird meist DNA mit Restriktionsenzymen an spezifischen Erkennungssequenzen geschnitten und mit Ligasen neu verknüpft. Häufig dienen Plasmide oder Viren als Vektoren, um die rekombinante DNA in den Zielorganismus zu transferieren.

Eine neuartige Alternative zur konventionellen DNA-Klonierung mit Restriktionsenzymen und Ligasen ist eine auf homologer Rekombination basierende Technologie, die als Recombineering bezeichnet wird.

Literatur

  • Alberts, B. et al.: Lehrbuch der Molekularen Zellbiologie. Wiley-VCH.
  • Campbell, N. A.: Biologie. Spektrum Akademischer Verlag.
  • Lippert, E.: Allgemeine Biologie. Gustav Fischer, UTB.

Siehe auch

Weblinks

Quellen

  1. Egener et al. BMC Plant Biology 2002 2:6 doi:10.1186/1471-2229-2-6
  2. Ralf Reski(1998): Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant in Science 3, 209-210 [1]

Die News der letzten Tage

29.11.2022
Ethologie | Zoologie
Geschlechterrollen im Tierreich hängen vom Verhältnis von Weibchen und Männchen ab
Wie wählerisch sollten Weibchen und Männchen sein, wenn sie einen Partner auswählen?
28.11.2022
Ökologie | Paläontologie | Säugetierkunde
Fossil aus dem Allgäu: Biber leben seit mehr als 11 Millionen Jahren im Familen-Clan
Die Hammerschmiede im Allgäu, Fundstelle des Menschenaffen Danuvius, ist eine einmalige Fundgrube für Paläontologen: Bereits über 140 fossile Wirbeltierarten konnten hier geborgen werden.
28.11.2022
Anthropologie | Neurobiologie
Arbeitsgedächtnis: Vorbereitung auf das Unbekannte
Beim Arbeitsgedächtnis, oder auch Kurzeitgedächtnis genannt, galt lange die Theorie, dass seine Kernaufgabe die aktive Speicherung von Informationen über einen kurzen Zeitraum ist.
28.11.2022
Meeresbiologie | Ökologie
Offshore-Windparks verändern marine Ökosysteme
Der Ausbau von Offshore-Windparks in der Nordsee geht voran, doch die Konsequenzen für die marine Umwelt, in der sie errichtet werden, sind noch nicht vollständig erforscht.
25.11.2022
Evolution | Genetik | Neurobiologie
Was haben Oktopus und Mensch gemeinsam?
Kopffüßler sind hochintelligente Tiere mit komplexem Nervensystem, dessen Evolution mit der Entwicklung von auffällig viel neuer microRNA verbunden ist.
25.11.2022
Klimawandel | Ökologie
Der Klimawandel in den Wäldern Norddeutschlands
Immer mehr Bäume leiden an den Folgen des menschgemachten Klimawandels der vergangenen Jahrzehnte.
24.11.2022
Biochemie | Entwicklungsbiologie | Genetik
Das Erwecken des Genoms
Die Befruchtung einer Eizelle durch ein Spermium ist der Beginn neuen Lebens, die mütterliche und väterliche Erbinformation, die DNA, wird neu kombiniert und speichert den Aufbau des Lebewesens.
24.11.2022
Genetik | Mykologie | Taxonomie
Die Welt der Pilze revolutioniert
Ein internationales Forschungsteam hat unter den bisher bekannten Pilzen und Flechten eine neue Großgruppe identifiziert: Mithilfe von Genom-Sequenzierung konnte nachgewiesen werden, dass über 600 Arten einen gemeinsamen Ursprung haben.
24.11.2022
Insektenkunde | Ökologie
Vegetationsfreie Flächen fördern bodennistende Wildbienen
Über die Nistansprüche bodennistender Wildbienen ist bisher relativ wenig bekannt, obwohl Nistplätze für die Förderung der meisten Wildbienenarten von zentraler Bedeutung sind.