Chloridkanal

Chloridkanal

Chloridkanal

Bändermodell des ClC von E. coli von der Seite und oben, nach PDB 3NMO
Bezeichner
Gen-Name(n) CLCN1, CLCN2, CLCN3, CLCN4, CLCN5, CLCN6, CLCN7
Transporter-Klassifikation
TCDB 2.A.49
Bezeichnung Chloridkanäle
Vorkommen
Übergeordnetes Taxon Lebewesen
Ausnahmen mehrere Protozoen mit kleinem Genom

Als Chloridkanäle werden in der Physiologie und Zellbiologie Transporter bezeichnet, die eine spezifische und mehr oder weniger selektive Leitfähigkeit für Chlorid-Ionen aufweisen. Die Unterfamilie der epithelialen calciumregulierten Chloridkanäle (E-ClC) werden als eigenständige Gruppe gesehen, da ihre Kanalfunktion inzwischen fraglich ist und sie auch nicht die CBS-Domäne der ClC-Familie aufweisen.[1]

Die Proteinfamilie der Chloridkanäle (ClC, abgeleitet vom englischen chloride channel) umfasst Chloridkanäle und sekundär aktive Chlorid/Protonen-Austauscher. Strukturelle Homologe dieser Familie finden sich durch alle biologischen Reiche hinweg, vom einfachen Darmbakterium Escherichia coli über Pflanzen bis hin zu den Säugetieren. Hierbei übernehmen die Kanäle unterschiedliche biologische Funktionen, wie z. B. die Teilhabe an der Regulation des zellulären Wasserhaushaltes oder die Stabilisierung des Ruhemembranpotentials im Skelettmuskel.

Wissenschaftliche Historie

1980 entdeckten Miller et al. den ersten Chloridkanal in Vesikeln des elektrischen Organs des Torpedorochens.[2] Anhand von Einzelkanal-Untersuchungen sagte er einen doppelporigen Kanal voraus, was seither von einer Vielzahl an Untersuchungen verfestigt wurde. In den 1990er Jahren untersuchte Thomas Jentsch die Proteinfamilie auf molekularer Ebene. 2002 löste R. Dutzler röntgenkristallographisch (2.5 -3.5 Å) die Strukturen der ClC-Transporter EcClC und StClC von E. coli bzw. Salmonella typhi und setzte hiermit die Basis für das molekulare Verständnis der Funktion.[3]

Isoformen im Menschen

Im Menschen finden sich neun Isoformen der ClC-Familie. Einige davon werden in den Plasmamembranen exprimiert, andere in den Membranen von intrazellulären Organellen. ClC-1 zum Beispiel findet sich in der Plasmamembran von Zellen des Skelettmuskels und ist in die Stabilisierung des Ruhemembranpotentials involviert.

Die einzelnen humanen Chlorid-Transporter: ClC-1, ClC-2, ClC-3, ClC-4, ClC-5, ClC-6, ClC-7, ClC-8, ClC-9.

Chloridkanäle in Pflanzen

Chloridkanäle erfüllen verschiedene Funktionen in Pflanzen, abhängig von ihrer Lokalisierung und ihrer Ionenaffinität. Am besten untersucht sind die sieben Chloridkanäle von Arabidopsis thaliana, AtCLCa bis AtCLCg.[4] Die Kanäle befinden sich in den Membranen verschiedener Organelle und erfüllen dort die Funktion von Aniontransportern. So transportieren AtCLCa und AtCLCe Nitrat anstelle von Chlorid über Membranen.[5]

Die Struktur

ClC-Transporter und -Kanäle sind rautenförmige Homodimere. Jede Untereinheit besitzt eine eigene sanduhrenförmige Pore mit der engsten Stelle im Zentrum der Membran. Von der extra- und intrazellulären Seite reichen zwei ausgedehnte wassergefüllte Vorhöfe in die Pore hinein, zentral liegt die Pore wasserfrei vor. Es werden drei Ionenbindungstellen angenommen: zwei je an der Kontaktfläche zwischen Vorhof und Poreninnerem und eine im wasserfreien Zentrum. Koordiniert werden die Ionen bei der Permeation hierbei von partiell geladenen Seitenketten-Hydroxygruppen und einigen Hauptkettenstickstoffatomen, welche gemeinsam den Selektivitätsfilter bilden und die Ionen energetisch durch den hydrophoben Teil der Membran balancieren.

Siehe auch

Einzelnachweise

  1. TCDB: Epitheliale Chloridkanäle
  2. Miller C, White MM. A voltage-dependent chloride conductance channel from Torpedo electroplax membrane. Ann N Y Acad Sci. 1980;341:534-51. PMID 6249158
  3. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002 Jan 17;415(6869):276-7. PMID 11796999
  4. Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family, Plant Science 2009
  5. Two anion transporters AtClCa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways, New Phytologist 2009

Literatur

Weblinks

  • PROSITE documentation PDOC51371. CBS-Domäne. Swiss Institute of Bioinformatics (SIB), abgerufen am 20. September 2011 (Lua-Fehler in Modul:Multilingual, Zeile 149: attempt to index field 'data' (a nil value)).

Die News der letzten Tage

30.01.2023
Ökologie | Physiologie
Ernährungsumstellung: Die Kreativität der fleischfressenden Pflanzen
In tropischen Gebirgen nimmt die Zahl der Insekten mit zunehmender Höhe ab.
27.01.2023
Land-, Forst-, Fisch- und Viehwirtschaft | Neobiota | Ökologie
Auswirkungen von fremden Baumarten auf die biologische Vielfalt
Nicht-einheimische Waldbaumarten können die heimische Artenvielfalt verringern, wenn sie in einheitlichen Beständen angepflanzt sind.
27.01.2023
Biochemie | Botanik | Physiologie
Wie stellen Pflanzen scharfe Substanzen her?
Wissenschaftler*innen haben das entscheidende Enzym gefunden, das den Früchten der Pfefferpflanze (lat Piper nigrum) zu ihrer charakteristischen Schärfe verhilft.
26.01.2023
Biochemie | Mikrobiologie | Physiologie
Ein Bakterium wird durchleuchtet
Den Stoffwechsel eines weit verbreiteten Umweltbakteriums hat ein Forschungsteam nun im Detail aufgeklärt.
26.01.2023
Bionik, Biotechnologie und Biophysik | Botanik | Physiologie
Schutzstrategien von Pflanzen gegen Frost
Fallen die Temperaturen unter null Grad, bilden sich Eiskristalle auf den Blättern von winterharten Grünpflanzen - Trotzdem überstehen sie Frostphasen in der Regel unbeschadet.
26.01.2023
Entwicklungsbiologie | Genetik
Neues vom Kleinen Blasenmützenmoos
Mithilfe mikroskopischer und genetischer Methoden finden Forschende der Universität Freiburg heraus, dass die Fruchtbarkeit des Laubmooses Physcomitrella durch den Auxin-Transporter PINC beeinflusst wird.
26.01.2023
Klimawandel | Mikrobiologie | Mykologie
Die Art, wie Mikroorganismen sterben beeinflusst den Kohlenstoffgehalt im Boden
Wie Mikroorganismen im Boden sterben, hat Auswirkungen auf die Menge an Kohlenstoff, den sie hinterlassen, wie Forschende herausgefunden haben.
25.01.2023
Entwicklungsbiologie | Evolution
Wie die Evolution auf unterschiedliche Lebenszyklen setzt
Einem internationalen Forscherteam ist es gelungen, eines der Rätsel der Evolution zu lösen.
24.01.2023
Biochemie | Ökologie | Physiologie
Moose verzweigen sich anders... auch auf molekularer Ebene
Nicht-vaskuläre Moose leben in Kolonien, die den Boden bedecken und winzigen Wäldern ähneln.
24.01.2023
Bionik, Biotechnologie und Biophysik | Genetik
Verfahren der Genom-Editierung optimiert
Im Zuge der Optimierung von Schlüsselverfahren der Genom-Editierung ist es Forscherinnen und Forschern in Heidelberg gelungen, die Effizienz von molekulargenetischen Methoden wie CRISPR/Cas9 zu steigern und ihre Anwendungsgebiete zu erweitern.
24.01.2023
Ökologie | Zoologie
Kooperation der männlichen australischen Spinnenart Australomisidia ergandros
Forschende konnten in einer Studie zeigen, dass Männchen der australischen Spinne Australomisidia ergandros ihre erjagte Beute eher mit den anderen Mitgliedern der Verwandtschaftsgruppe teilen als die Weibchen.
24.01.2023
Bionik, Biotechnologie und Biophysik | Physiologie
Mutante der Venusfliegenfalle mit Zahlenschwäche
Die neu entdeckte Dyscalculia-Mutante der Venusfliegenfalle hat ihre Fähigkeit verloren, elektrische Impulse zu zählen.
23.01.2023
Biochemie | Physiologie
neue Einblicke in Mechanismen der Geschmackswahrnehmung
Die Komposition der Lebensmittel, aber auch die Speisenabfolge ist für das perfekte Geschmackserlebnis eines Menüs entscheidend.