Spermien in Schräglage: Computersimulationen zeigen, wie Spermien um Ecken und Kanten kommen

Neues aus der Forschung

Spermien in Schräglage: Computersimulationen zeigen, wie Spermien um Ecken und Kanten kommen

Meldung vom 27.02.2019

Wissenschaftler des Forschungszentrums Jülich haben auf einem Supercomputer simuliert, wie Spermien durch winzige Kanäle schwimmen. Ihr Modell liefert eine Erklärung, warum die meisten Samenzellen in engen Durchgängen immer schräg mit dem Kopf voraus an der Wand entlangwandern. Auch leichte Krümmungen können sie so passieren. Wann genau der Kontakt abreißt, hängt vom Geißelschlag der Spermien ab, wie die Forscher mit ihren Berechnungen zeigen konnten.


Sebastian Rode, Jens Elgeti and Gerhard Gompper
Sperm motility in modulated microchannels
New J. Phys.21(2019)013016
DOI: 10.1088/1367-2630/aaf544


Das Rennen, das sich die männlichen Samenzellen zur weiblichen Eizelle liefern, ist ein harter Ausscheidungskampf. Auf dem Weg müssen die Spermien das mehrere Tausendfache ihrer eigenen Körperlänge zurücklegen. Nur etwa eine von einer Million kommt am Ende in die Nähe des Ziels. Welche Faktoren über Sieg und Niederlage entscheiden, ist bis heute nicht vollständig geklärt.

Wie sich Spermien durch enge, gewundene Kanäle bewegen, ist für viele Prozesse im Labor relevant. Insbesondere dann, wenn es gelingen sollte, den Zusammenhang zwischen dem transportierten Erbgut und dem Bewegungsmuster der Spermien besser zu verstehen. Mithilfe der nun gewonnenen Erkenntnisse könnte man dann einen „Hindernislauf“ für Spermien konstruieren, der Spermien nach der Wellenlänge ihres Geißelschlags selektiert, etwa zur Verbesserung der Ergebnisse bei der künstlichen Befruchtung.

Umgekehrt sind auch Verhütungsmethoden denkbar. Eine solche Pille für den Mann könnte den Geißelschlag medikamentös verändern und die Schlagzahl künstlich herabsetzen oder beschleunigen, wenn sich bestimmte Schlagcharakteristika finden lassen, die für den Weg der Samenzellen zur Eizelle essenziell sind.


 
Weil der Schwanz weiter als Kopfbreite ausschlägt, schwimmt das Spermium schräg gegen die Wand.

Hintergrund: Immer an der Wand entlang

Bereits vor mehreren Jahrzehnten war Forschern in Experimenten aufgefallen, dass sich Spermien von Wänden wie magisch angezogen fühlen und bevorzugt mit dem Kopf an der Wand entlangbewegen. Lange war unklar, wie sich dieser Effekt in engen Kanälen auswirken würde. Mithilfe von Simulationen auf dem Jülicher Superrechner JURECA liefern Wissenschaftler vom Jülicher Institute of Complex Systems (ICS-2) nun Antworten auf diese Fragen.

Spermienzellen bestehen aus einem wenige Mikrometer – oder wenige tausendstel Millimeter – großen Kopf. Daran schließt sich eine rund 50 Mikrometer lange Geißel an, die sich zur Fortbewegung hin und her schlängelt. Typischerweise sind die Ausschläge der Geißel deutlich breiter als der Kopf des Spermiums. Betrachtet man die Bewegung über längere Zeit, so ergibt sich daraus eine Kegelform mit dem schmalen Kopf an der Spitze und dem weit hin und her peitschenden Spermienschwanz am anderen Ende.

„Aus dieser Form ergibt sich nun schon rein geometrisch, dass die Längsachse des Spermiums leicht schräg gegen die Wand gerichtet ist. Bei der Vorwärtsbewegung drückt sich die Zelle folglich immer leicht gegen die Wand, sodass sie immer in Wandnähe bleibt“, erklärt Dr. Jens Elgeti vom Jülicher Institute of Complex Systems (ICS-2).


Animation Spermium (Länge: 00:39 min)



Details des Geißelschlags entscheidend

Biegt sich der Kanal nur leicht, folgt das Spermium dem Wandverlauf. Ab welchem Krümmungsradius der Kontakt zur Wand verloren geht, hängt dabei stark vom Schlagmuster der Geißel ab. Die Forscher unterscheiden zwischen einem zweidimensionalen Schlag, bei dem der Spermienschwanz in einer Ebene schwingt, und einem spiralförmigen 3D-Muster, bei dem die Geißel in alle drei Raumrichtungen rotiert.

„Die Simulation unterschiedlicher Wellenlängen zeigt, dass Spermien mit einem 3D-Schlag auch bei deutlich stärker gekrümmten Windungen noch an der Wand bleiben als solche mit einem 2D-Schlag“, erklärt Jens Elgeti. Der Grund: Spermien, die sich nur planar in einer Ebene schlängeln, richten ihre Schlagrichtung früher oder später parallel zur Wand aus. Die wirksame Kegelform geht so verloren und der Kontakt zur Wand reißt ab. Spermien, die mit einem 3D-Schlag unterwegs sind, behalten ihre Kegelform dagegen in allen Raumrichtungen bei.

Im Fachmagazin „New Journal of Physics“ liefern die Forscher zudem eine Erklärung für ein weiteres Phänomen, das Wissenschaftler zuvor in Experimenten beobachtet hatten. Viele Spermien schwimmen nach einer Krümmung in einem Mikrokanal nämlich nicht einfach weiter geradeaus, sondern werden leicht in Kurvenrichtung abgelenkt – so, wie es durch ihre schräge Ausrichtung an der Wand vorgegeben wird.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 7 Tage

www.biologie-seite.de 12 Meldungen

Meldung vom 21.03.2019

Besiedlung in Zeitlupe

Langzeitexperiment in der Tiefsee der Arktis zeigt: Sesshafte Tiere können in großen Wassertiefen nur extrem ...

Meldung vom 21.03.2019

Möglicher Ur-Stoffwechsel in Bakterien entdeckt

Mikrobiologen aus Braunschweig, Tübingen und Konstanz entdecken, wie Bakterien Eisen-Schwefel-Minerale als En ...

Meldung vom 20.03.2019

Herzerkrankungen: Giftige Qualle hilft der Forschung

Studie der Universität Bonn nutzt Lichtrezeptor des Tieres, um Regulation des Herzschlages zu untersuchen.

Meldung vom 20.03.2019

Optischer Sensor soll Pflanzenzüchtung beschleunigen

System der Uni Bonn untersucht, wie Genaktivitäten und Reflexions-Eigenschaften von Pflanzen zusammenhängen. ...

Meldung vom 20.03.2019

Fünf-Punkte-Plan zur Integration der Hobbyangler in Fischerei- und Gewässerschutzpolitik

Weltweit gibt es etwa fünfmal mehr Hobbyangler als Berufsfischer. Bisher berücksichtigt die internationale F ...

Meldung vom 19.03.2019

Artenreiche Gärten: Oasen im Siedlungsraum von hohem sozialen Wert

Grünräume wie Schreber- oder Hausgärten sind in städtischen Ballungszentren für viele Menschen ein Zufluc ...

Meldung vom 19.03.2019

Expertenservice zum Welttag des Wassers

Am 22. März 2019 ist Weltwassertag. Zu diesem Anlass nennen Forschende des Leibniz-Instituts für Gewässerö ...

Meldung vom 19.03.2019

Ausgeflattert: Zwei Drittel weniger Tagfalter

Senckenberg-Wissenschaftler Thomas Schmitt hat in einem deutsch-polnischen Team die Auswirkungen verschiedener ...

Meldung vom 18.03.2019

Mikroben können auf Stickstoffmonoxid (NO) wachsen

Stickstoffmonoxid (NO) ist ein zentrales Molekül im Kreislauf des Elements Stickstoff auf der Erde. Eine Fors ...

Meldung vom 18.03.2019

Eine neue Schlangenart in Bayern - die Alpen-Barrenringelnatter

Forscher der Zoologischen Staatssammlung München (SNSB-ZSM) haben in der Alpenregion Bayerns eine bisher übe ...

Meldung vom 15.03.2019

Oszillation im Muskelgewebe

Wenn ein Muskel wächst oder eine Verletzung in ihm ausheilt, verwandelt sich ein Teil seiner Stammzellen in n ...

Meldung vom 14.03.2019

Lecker oder faulig- Ein abstoßender Geruch hemmt die Wahrnehmung eines angenehmen Duftes

In der Natur sind Essigfliegen unterschiedlichsten Duftgemischen ausgesetzt, die sowohl anziehende als auch ab ...


06.03.2019
Bindung mit Folgen
16.01.2019
Plötzlich gealtert

19.12.2018
Baum der Schrecken
07.11.2018
Plastik im Fisch
28.09.2018
Gestresste Pflanzen

13.08.2018
Wie Vögel lernen

15.06.2018
Primaten in Gefahr
24.05.2018
Störche im Aufwind

28.02.2019
Kenne Deinen Fisch!
28.02.2019
Leben ohne Altern
28.02.2019
Lebensraum Käse
28.02.2019
Domino im Urwald
28.02.2019
Trend-Hobby Imker
28.02.2019
Wie Bienen riechen

Newsletter

Neues aus der Forschung