Neuer Eisentransporter bei Getreide-assoziierten Bakterien entdeckt

Neues aus der Forschung

Meldung vom 07.09.2018

Ein Jenaer Forscherteam hat ein neues Siderophor („Eisenträger“) entdeckt. Das Gramibactin genannte Molekül wird von Bakterien gebildet, die im Wurzelbereich von Mais und Weizen leben. Es bindet schwerlösliches Eisen aus der Umgebung und bringt es in den bakteriellen Stoffwechsel ein. Die Getreidepflanzen profitieren davon, da sie das von den Bakterien mobilisierte Eisen aufnehmen und mehr Chlorophyll bilden können. Gramibactin bindet Eisen auf eine aus der Natur bisher nicht bekannte Art. Die im Fachjournal Nature Chemical Biology veröffentlichte Studie beleuchtet das komplexe Zusammenspiel des Wurzelmikrobioms mit der Wirtspflanze und dessen Bedeutung für die menschliche Ernährung.


180913-1447_medium.jpg
 
Maispflanzen können den Eisen-Gramibactin-Komplex zur verstärkten Chlorophyllsynthese nutzen (4 dunkle Blätter rechts). Kontrollversuche mit eisenfreiem Siderophor führen zu helleren Blättern (links).
Hermenau R, Ishida K, Gama S, Hoffmann B, Pfeifer-Leeg M, Plass W, Mohr JF, Wichard T, Saluz HP, Hertweck C
Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system
Nature Chemical Biology 14, 841-843

Das Wissenschaftler-Team um Christian Hertweck fand im Genom des Bakteriums Paraburkholderia graminis Hinweise auf ein neuartiges Eisenaufnahmesystem. Die Forscher isolierten daraufhin ein ringförmiges Molekül, das zur Substanzfamilie der Lipodepsipeptide gehört. Sie gaben ihm den Namen Gramibactin, da die Erzeugerbakterien mit den Wurzeln von Süßgräsern – den Gramineen – vergesellschaftet sind.

Gramibactin fixiert Eisen(III)-Ionen mit einer sehr hohen Bindekraft. Als Bindungspartner dienen zwei ungewöhnliche N-Nitrosohydroxylamin-Gruppierungen, die aus der Ringstruktur herausragen und bislang noch nicht in natürlichen Eisentransportern beobachtet wurden. Dies macht Gramibactin zum ersten Vertreter einer neuen Klasse von Siderophoren.


 
Molekülmodell von Gramibactin. Gelb unterlegt sind mögliche Bindungsstellen für Eisen.

Getreidepflanzen profitieren

Die Forscher prüften schließlich, ob Gramibactin tatsächlich die Eisenversorgung von Pflanzen verbessern kann, in deren Nähe es vorkommt. Als Maß hierfür verwendeten Sie die Bildung von Chlorophyll. Der für die Photosynthese benötigte grüne Pflanzenfarbstoff kann nur dann synthetisiert werden, wenn genügend Eisen vorhanden ist. Tatsächlich konnte das Team demonstrieren, dass Maispflanzen bis zu 50 % mehr Chlorophyll bildeten, wenn die Nährlösung den Gramibactin-Eisen-Komplex enthielt.

Die Ergebnisse der Studie zeigen, dass durch bakterielle Aktivitäten bereitgestelltes Eisen das Pflanzenwachstum günstig beeinflussen kann. Am Beispiel von Mais und Weizen, zwei der wichtigsten Getreidearten für die menschliche Ernährung, lässt sich das Ausmaß dieser Erkenntnisse erahnen. Eine ausbalancierte, natürliche Besiedelung des Wurzelraumes mit Mikroorganismen – das sogenannte Wurzelmikrobiom – ist ein wesentlicher Faktor für Pflanzenwachstum und hohe Erträge.

„Es ist immer wieder faszinierend zu sehen, wie vielfältig chemische Probleme in der Natur gelöst werden“, sagt Hertweck und fügt hinzu: „Wir hoffen, dass unsere Erkenntnisse einen Beitrag dazu leisten, die Fitness und Gesundheit dieser wichtigen Kulturpflanzen auf natürlichem Weg zu steigern.“



Die Autoren der Studie arbeiten im Sonderforschungsbereich ChemBioSys zusammen. In dem von der Deutschen Forschungsgemeinschaft geförderten Programm arbeiten Wissenschaftler der Friedrich-Schiller-Universität, des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie und weiterer Institutionen gemeinsam an der Aufklärung von Signalwegen in komplexen Lebensgemeinschaften. Häufig sind mehrere Arten an der Synthese von Substanzen beteiligt oder ziehen unterschiedlichen Nutzen daraus. Die Erforschung solcher Multipartner-Systeme und der sie stabilisierenden Mechanismen sind ein Forschungsschwerpunkt in Jena.

Der Sonderforschungsbereich ChemBioSys

Im Sonderforschungsbereich ChemBioSys untersuchen Biologen, Chemiker und Physiker gemeinsam fundamentale Kontrollmechanismen in komplexen Biosystemen, die unser tägliches Leben beeinflussen. Hierzu studieren sie repräsentative Biosysteme mit Bakterien, Pilzen, Mikroalgen, Pflanzen, Tieren und Humanzellen in steigender Komplexität. Es werden neue Moleküle erforscht und Strategien erprobt, um die Zusammensetzung von Lebensgemeinschaften zu beeinflussen. Am SFB ChemBioSys sind Wissenschaftler der Friedrich-Schiller-Universität Jena, des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie und des Max-Planck-Instituts für chemische Ökologie beteiligt. Das Programm wird von der Deutschen Forschungsgemeinschaft gefördert.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 7 Tage

www.biologie-seite.de 14 Meldungen

Meldung vom 26.06.2019

Kein Platz für Wölfe

Wölfe lösen beim Menschen gleichermaßen Angst und Faszination aus. Das Raubtier wird bei Nutztierhaltern, J ...

Meldung vom 25.06.2019

Studie: Spinat-Extrakt führt zu Leistungssteigerungen im Sport

Ein Extrakt aus Spinat kann einer internationalen Studie unter Beteiligung der Freien Universität Berlin zufo ...

Meldung vom 25.06.2019

Forscher der Humboldt-Universität entschlüsseln, wie Blütenpflanzen ihren Stoffwechsel drosseln

Artikel im Wissenschaftsjournal eLife erschienen.

Meldung vom 25.06.2019

Upcycling in Symbiose: Von „minderwertigen“ Substanzen zu Biomasse

Forschende entdecken den ersten bekannten schwefeloxidierenden Symbionten, der rein heterotroph lebt.

Meldung vom 25.06.2019

Nicht nur der Wind zeigt den Weg

Wenn der südafrikanische Dungkäfer seine Dungkugel vor sich her rollt, muss er den Weg möglichst präzise k ...

Meldung vom 25.06.2019

Rätsel um Ursprung der europäischen Kartoffel gelöst

Woher stammt die europäische Kartoffel? Pflanzen, die im 19. Jahrhundert auf einer Expedition des britischen ...

Meldung vom 24.06.2019

Molekulare Schere stabilisiert das Zell-Zytoskelett

Forschende des Paul Scherrer Instituts PSI in Villigen haben erstmals die Struktur wichtiger Enzyme in menschl ...

Meldung vom 24.06.2019

Solarium für Hühner - Wie sich der Vitamin-D-Gehalt von Eiern erhöhen lässt

Viele Menschen leiden unter einem Vitamin-D-Mangel. Das kann brüchige Knochen und ein erhöhtes Risiko für A ...

Meldung vom 21.06.2019

Genom der Weisstanne entschlüsselt: Baumart für den Wald der Zukunft

Die Weisstanne ist eine wichtige Baumart im Hinblick auf den Klimawandel. Um sie besser erforschen zu können, ...

Meldung vom 21.06.2019

Künstliche Intelligenz lernt Nervenzellen am Aussehen zu erkennen

st es möglich, das Gehirn zu verstehen? Noch ist die Wissenschaft weit von einer Antwort auf diese Frage entf ...

Meldung vom 21.06.2019

Pilz produziert hochwirksames Tensid

Forschungsteam der Friedrich-Schiller-Universität Jena entdeckt im Bodenpilz Mortierella alpina eine bisher u ...

Meldung vom 20.06.2019

Zufall oder Masterplan

Gemeinsame Pressemitteilung der Christian-Albrechts-Universität zu Kiel und des Max-Planck-Instituts für Ev ...

Meldung vom 20.06.2019

Systeme stabil halten

Sowohl die Natur als auch die Technik sind auf integrierende Feedback-Mechanismen angewiesen. Sie sorgen dafü ...

Meldung vom 19.06.2019

Wie sich Bakterien gegen Plasmabehandlung schützen

Angesichts von immer mehr Bakterien, die gegen Antibiotika resistent werden, setzt die Medizin unter anderem a ...


21.05.2019
Namenlose Fliegen
03.05.2019
Eine Frage der Zeit
24.04.2019
Kraftwerk ohne DNA

06.03.2019
Bindung mit Folgen
16.01.2019
Plötzlich gealtert

19.12.2018
Baum der Schrecken
07.11.2018
Plastik im Fisch
28.09.2018
Gestresste Pflanzen

13.08.2018
Wie Vögel lernen

15.06.2018
Primaten in Gefahr
24.05.2018
Störche im Aufwind
13.09.2018
Kenne Deinen Fisch!
13.09.2018
Leben ohne Altern
13.09.2018
Lebensraum Käse
13.09.2018
Domino im Urwald
13.09.2018
Trend-Hobby Imker
13.09.2018
Wie Bienen riechen

Newsletter

Neues aus der Forschung