Polycystin-1

Polycystin-1

Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 4303 Aminosäuren; 460 kDa
Sekundär- bis Quartärstruktur multipass Rezeptor
Isoformen 3
Bezeichner
Gen-Name PKD-1
Externe IDs OMIM: 601313 UniProtP98161   MGI: 97603
Transporter-Klassifikation
TCDB 1.A.5.1.1
Bezeichnung Polycystin-Kationenkanal
Vorkommen
Homologie-Familie PKD1
Übergeordnetes Taxon Euteleostomi
Orthologe
Mensch Maus
Entrez 5310 18763
Ensembl ENSG00000008710 ENSMUSG00000032855
UniProt P98161 O08852
Refseq (mRNA) NM_000296 NM_013630
Refseq (Protein) NP_000287 NP_038658
Genlocus Chr 16: 2.08 - 2.13 Mb Chr 17: 24.28 - 24.32 Mb
PubMed-Suche 5310 18763
Schematische Darstellung von Polycystin-1 und Polycystin-2 an einer Zelle.[1]
Polycystin-1 (PKD-1) ist ein Glykoprotein, das im Körper vieler Wirbeltiere vom PKD1-Gen kodiert wird. Es spielt eine wichtige Rolle beim Krankheitsbild Zystenniere.

Aufbau

Polycystin-1 besteht aus 4303 Aminosäuren[2] und hat eine Molekülmasse von etwa 460 kDa. Sein Aufbau lässt sich in drei Bereiche untergliedern:

Die extrazelluläre Region besteht aus über 2500 Aminosäuren. Die bilden sich wiederholende Leucin-reichen Einheiten, einen Bereich aus C-Type Lecitin, 16 Immunoglobulin-ähnliche sich ebenfalls wiederholende Bereiche und vier Typ III Fibronectin-verwandte Domänen.[3]

Funktion

Polycystin-1 spielt bei dem Aufbau der Nierenkanälchen (tubuli) eine wichtige Rolle. Mutationen im PKD1-Gen, das Polycystin-1 kodiert, stehen in unmittelbarer Verbindung zur autosomal-dominanten Zystenniere (ADPKD), der häufigsten lebensbedrohlichen Erbkrankheit beim Menschen. In 85 % aller ADPKD-Erkrankungen ist eine Mutation in PKD1 die Ursache. Bei den restlichen 15 % ist PKD2, das Polycystin-2 kodiert, der Ausgangspunkt für die ADPKD. Polycystin 1 ist multifunktional und die meisten Funktionen des Glycoproteins im Organismus sind noch unbekannt. Es spielt unter anderem bei der Reifung von Epithelzellen und bei der Aufrechterhaltung der renalen epithelialen Differenzierung eine wichtige Rolle; ebenso bei der Organisation der Struktur der Nephrone im frühen fetalen Stadium. Auch ist eine Beteiligung an Zell-Zell- und Zell-Matrix-Interaktionen nachgewiesen.[4]

Polyzystin-1 enthält zwei leucin-reiche Wiederholungseinheiten (Leucine-Rich Repeats, LRR), die von zwei cystein-reichen Bereichen flankiert werden. LRRs finden sich bei Proteinen, die an Protein-Protein-Interaktionen beteiligten. Polyzystin-1 erhält nur wenige LRRs. Zusammen mit anderen Proteinen bildet es eine hufeisenförmige Struktur um RNase A zu binden. Die LRRs des Polyzystin-1 modulieren des Weiteren die Bindung an Kollagen I, Fibronektin und Laminin modulieren. Die LRRs haben offensichtlich im Fall der Bindung an Laminin eine proliferationshemmende Wirkung, was wiederum Fehllokalisationen von Membranproteinen und Veränderungen der extrazellulären Matrix bewirken kann.[5]

Zusammen mit Polycystin-2 bewirkt Polycystin-1 die Produktion von calciumpermeable, nicht selektiven Kationenkanälen. Polyzystin 2. Zusammen spielen beide Proteine spielen eine wichtige Rolle in der Wachstumsregulation. Polycystin-2 ist dabei ein wichtiger Co-Faktor. Diese Interaktion erklärt auch warum die Mutationen eines der beiden Gene (PKD1 oder PKD2) zum PKD-Phänotyp führen kann.[6]

Polycystin-1, beziehungsweise PKD1, wird in einer Reihe unterschiedlicher Gewebe exprimiert. Neben den, bei einer ADPKD betroffenen Organen Nieren und Leber, findet sich Polycystin auch in den folgenden Organen: Duodenum, Herz, Nebenniere, Lunge, Hoden und Thymus. Der Gehalt ist in der Großhirnrinde dreimal höher als in der Niere. In polyzystischen Nieren ist der Gehalt an Polycystin entsprechender mRNA zweimal höher als in normalen Nieren.[7]

Genetik

siehe Hauptartikel: PKD1

Polycystin-1 wird beim Menschen vom PKD1-Gen (polycystic kidney disease 1 (autosomal dominant)) auf Chromosom 16 Genlocus p13.3 kodiert.[8]

Einzelnachweise

  1. C. Stayner und J. Zhou: Polycystin channels and kidney disease. In: Trends in Pharmacological Sciences 22, 2001, S. 543–546. PMID 11698076
  2. S. Rosetti und P. C. Harris: Genotype–Phenotype Correlations in Autosomal Dominant and Autosomal Recessive Polycystic Kidney Disease. In: J Am Soc Nephrol 18, 2007, S. 1374–1380. PMID 17429049
  3. J. Hughes u. a.: The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. In: Nature Genetics 10, 1995, S. 151–160. PMID 7663510
  4. E. C. Kappe: Molekularbiologische Untersuchungen am PKD1-Gen der Katze. Dissertation, Justus-Liebig-Universität Giessen, 2008.
  5. T. C. Burn u. a.: Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) gene predicts the presence of a leucine-rich repeat. The American PKD1 Consortium (APKD1 Consortium). In: Hum. Mol. Genet. 4, 1995, S. 575–582. PMID 7633406
  6. A. K. Bhunia u. a.: PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. In: Cell 109, 2002, S. 157–168. PMID 12007403
  7. C. J. Ward u. a.: Polycystin, the polycystic kidney disesae 1 protein, is expressed by epithelial cells in fetal, adult and polycystic kidney. In: PNAS 93, 1996, S. 1524–1528. PMID 8554072
  8. genenames.org: PKD 1 eingesehen am 10. September 2008

Literatur


Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage (6 Meldungen)

26.01.2022
Morphologie | Evolution | Insektenkunde
Flexible Mundwerkzeuge ermöglichten extremen Artenreichtum winziger Wespen
Ein Forschungsteam untersucht derzeit große Mengen von sehr kleinen Insekten mit Röntgenstrahlen, um den Gründen ihrer außergewöhnlichen Vielfalt auf die Spur zu kommen.
25.01.2022
Zytologie | Genetik | Biochemie
Eine unerwartete Anziehung von Nukleinsäuren und Fett
Wissenschaftler finden heraus, dass Lipide die RNA-Aktivität modulieren – ein möglicher Hinweis auf den Ursprung des Lebens und ein Werkzeug für die synthetische Biologie.
25.01.2022
Ökologie | Bionik, Biotechnologie, Biophysik | Biodiversität
Weltweit Schutzgebiete unter die Lupe genommen
Schutzgebiete gehören zu den effektivsten Mitteln, um die biologische Vielfalt zu erhalten, allerdings werden neue Schutzgebiete oft eingerichtet, ohne bereits bestehende Reservate zu berücksichtigen.
24.01.2022
Anthropologie | Ethologie | Primatologie
Werkzeuggebrauch bei Schimpansen ist kulturell erlernt
Werden Schimpansen Nüsse und Steine vorgesetzt, wissen sie damit von sich aus nicht viel anzufangen.
24.01.2022
Ethologie | Biochemie
Partnersuche bei Spinnen
In einer Studie an der Wespenspinne „Argiope bruennichi“ haben Wissenschaftlerinnen zeigen können, dass die Weibchen ihre Pheromonmenge strategisch an die Paarungssituation anpassen können.
21.01.2022
Ökologie | Neobiota
Invasive Krebstiere verursachen Schäden in 3-stelliger Millionenhöhe
Ein internationales Team hat die wirtschaftlichen Kosten, die invasive aquatische Krebstiere weltweit verursachen, berechnet.