Hydrolyse

Die Hydrolyse (altgriechisch ὕδωρ hydor „Wasser“ und λύσις lýsis „Lösung, Auflösung, Beendigung“) ist die Spaltung einer (bio)chemischen Verbindung durch Reaktion mit Wasser.[1] Dabei wird (formal) ein Wasserstoffatom an das eine „Spaltstück“ abgegeben, der verbleibende Hydroxyrest an das andere Spaltstück gebunden. Die Umkehrung der Hydrolyse ist eine Kondensationsreaktion. Die Hydrolyse ist eine Substitutionsreaktion, bei der eines der Edukte das Lösungsmittel Wasser ist. Somit zählt die Hydrolyse zu den Solvolysen.[2]

Allgemein gilt:

$ \mathrm {{\color {Red}X{-}Y}\ +\ {\color {Blue}H{-}OH}\longrightarrow \ {\color {Red}X{-}}{\color {Blue}H}\ +\ {\color {Red}Y}{\color {Blue}{-}OH}} $
Hydrolyse der Verbindung XY.

Abweichend von der oben genannten Definition wurde der Begriff Hydrolyse, auch Salzhydrolyse genannt, von Arrhenius zur Beschreibung von basischen oder sauren Reaktionen verwendet, die beim Lösen von Salzen auftreten, deren Säure- bzw. Basenreste sich von schwachen Säuren bzw. schwachen Basen ableiten.[3] Die Hydrolyse ist hier eine Umkehrung der Neutralisation. Siehe dazu Säure-Base-Konzept nach Arrhenius.

Beispiele

  • Hydrolyse von Alkylfluoriden[4]
  • Hydrolyse von Carbonsäurechloriden zu Carbonsäuren und Chlorwasserstoff[5]
  • Hydrolyse von Benzylchlorid zu Benzylalkohol und Chlorwasserstoff[6]
  • Hydrolyse von Calciumcarbid zu Acetylen und Calciumhydroxid [7]
  • Hydrolyse von Carbonsäureamiden zu Carbonsäuren [8]
  • Hydrolyse von Carbonsäureanhydriden zu Carbonsäuren [9]
  • Hydrolyse von pflanzlichen oder tierischen Fetten zu Glycerin und Fettsäuren [10]
  • Esterhydrolasen katalysieren die Hydrolyse eines Enantiomers chiraler Ester zu Carbonsäure und Alkohol, das andere Enantiomer wird nicht hydrolysiert[11]
  • Hydrolyse von Acetalen zu Aldehyden und Alkoholen[12]
  • Hydrolyse von Ketalen zu Ketonen und Alkoholen[12]
  • Hydrolyse von Grignard-Verbindungen[13]
  • Hydrolyse von Isocyaniden[14]
  • Hydrolyse von Isothiocyanaten[15]
  • Hydrolyse von Nitrilen[16] über Carbonsäureamide zu Carbonsäuren
  • Hydrolyse von Oximen zu Carbonylverbindungen (Aldehyde oder Ketone) und Hydroxylamin[17]
  • Hydrolyse von Iminen zu Carbonylverbindungen (Aldehyde oder Ketone) und primären Aminen[17]
  • Hydrolyse von Hydrazonen zu Carbonylverbindungen (Aldehyde oder Ketone) und Hydrazin[17]
  • Hydrolyse von Orthocarbonsäureestern[2]
  • Hydrolyse von Oxiranen[18][19]
  • Partielle Hydrolyse von Peptiden, bei der nur einige Peptidbindungen gespalten werden[20]
  • Hydrolyse von Sulfonylchloriden[21]
  • Hydrolyse von Tetrachlorsilan zu Siliziumdioxid und Chlorwasserstoff[22]
  • Hydrolyse von tert-Butylchlorid

Die meisten der oben aufgelisteten Hydrolysen laufen besser und schneller ab, wenn man die Reaktion im sauren oder basischen Medium durchführt, statt bei neutralem pH-Wert.

Ein Beispiel ist die saure Hydrolyse eines Esters, die die Umkehrreaktion zur Veresterung darstellt, bzw. die im basischen ablaufende Verseifung[23]

Hydrolyse von Biomolekülen

Durch Hydrolyse werden viele Biomoleküle (z. B. Proteine, Disaccharide, Polysaccharide oder Fette) im Stoffwechsel in ihre Bausteine (Monomere) zerlegt, meist unter Katalyse durch ein Enzym (Hydrolase[11]).

Eine wichtige Hydrolyse-Reaktion, die Proteinen Energie für mechanische Arbeit, Transportprozesse u.ä. gibt, ist die Spaltung von ATP zu ADP und einem Phosphatrest.

Bei einer technischen Anwendung, der Analyse der Aminosäurezusammensetzung von Proteinen, werden gereinigte Proteine unter Luftausschluss und Temperaturen > 100 °C durch hohe Konzentrationen von Salzsäure hydrolysiert. Das Hydrolysat des Proteins kann – unter Kenntnis der jeweiligen Stabilität der freigesetzten Aminosäuren unter Standardbedingungen und deren Korrekturfaktoren – auf die Zusammensetzung der jeweiligen Aminosäuren untersucht werden.

Siehe auch

  • Aminolyse
  • Alkoholyse
  • Hydrolytische Klasse

Einzelnachweise

  1. Brockhaus ABC Chemie, VEB F. A. Brockhaus Verlag Leipzig 1965, S. 562.
  2. 2,0 2,1 Siegfried Hauptmann: Reaktion und Mechanismus in der organischen Chemie, B. G. Teubner, Stuttgart, 1991, S. 78, ISBN 3-519-03515-4. Referenzfehler: Ungültiges <ref>-Tag. Der Name „Hauptmann“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert.
  3. Jürgen Falbe, Manfred Regitz (Hrsg.): CD Römpp Chemie Lexikon, Thieme, Stuttgart, 1995.
  4. Ivan Ernest: Bindung, Struktur und Reaktionsmechanismen in der organischen Chemie, Springer-Verlag, 1972, S. 110, ISBN 3-211-81060-9.
  5. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 415, ISBN 3-342-00280-8.
  6. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 173, ISBN 3-342-00280-8.
  7. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 263, ISBN 3-342-00280-8.
  8. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 423, ISBN 3-342-00280-8.
  9. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 409, ISBN 3-342-00280-8.
  10. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 331 u. 739, ISBN 3-342-00280-8.
  11. 11,0 11,1 Hans Beyer und Wolfgang Walter: Organische Chemie, S. Hirzel Verlag, Stuttgart, 1991, 22. Auflage, Seite 895, ISBN 3-7776-0485-2. Referenzfehler: Ungültiges <ref>-Tag. Der Name „Beyer“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert.
  12. 12,0 12,1 Ivan Ernest: Bindung, Struktur und Reaktionsmechanismen in der organischen Chemie, Springer-Verlag, 1972, S. 101, ISBN 3-211-81060-9.
  13. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 204, ISBN 3-342-00280-8.
  14. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 431, ISBN 3-342-00280-8.
  15. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 471, ISBN 3-342-00280-8.
  16. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 429, ISBN 3-342-00280-8.
  17. 17,0 17,1 17,2 Siegfried Hauptmann: Reaktion und Mechanismus in der organischen Chemie, B. G. Teubner, Stuttgart, 1991, S. 152, ISBN 3-519-03515-4.
  18. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 558, ISBN 3-342-00280-8.
  19. Siegfried Hauptmann: Reaktion und Mechanismus in der organischen Chemie, B. G. Teubner, Stuttgart, 1991, S. 176, ISBN 3-519-03515-4.
  20. Paula Yurkanis Bruice: Organic Chemistry, Pearson Education Inc., 2004, 4. Auflage, S. 1201, ISBN 0-13-121730-5.
  21. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 482, ISBN 3-342-00280-8.
  22. Siegfried Hauptmann: Reaktion und Mechanismus in der organischen Chemie, B. G. Teubner, Stuttgart, 1991, S. 8−9, ISBN 3-519-03515-4.
  23. Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 418−419, ISBN 3-342-00280-8.

Die News der letzten Tage

29.11.2022
Ethologie | Zoologie
Geschlechterrollen im Tierreich hängen vom Verhältnis von Weibchen und Männchen ab
Wie wählerisch sollten Weibchen und Männchen sein, wenn sie einen Partner auswählen?
28.11.2022
Ökologie | Paläontologie | Säugetierkunde
Fossil aus dem Allgäu: Biber leben seit mehr als 11 Millionen Jahren im Familen-Clan
Die Hammerschmiede im Allgäu, Fundstelle des Menschenaffen Danuvius, ist eine einmalige Fundgrube für Paläontologen: Bereits über 140 fossile Wirbeltierarten konnten hier geborgen werden.
28.11.2022
Anthropologie | Neurobiologie
Arbeitsgedächtnis: Vorbereitung auf das Unbekannte
Beim Arbeitsgedächtnis, oder auch Kurzeitgedächtnis genannt, galt lange die Theorie, dass seine Kernaufgabe die aktive Speicherung von Informationen über einen kurzen Zeitraum ist.
28.11.2022
Meeresbiologie | Ökologie
Offshore-Windparks verändern marine Ökosysteme
Der Ausbau von Offshore-Windparks in der Nordsee geht voran, doch die Konsequenzen für die marine Umwelt, in der sie errichtet werden, sind noch nicht vollständig erforscht.
25.11.2022
Evolution | Genetik | Neurobiologie
Was haben Oktopus und Mensch gemeinsam?
Kopffüßler sind hochintelligente Tiere mit komplexem Nervensystem, dessen Evolution mit der Entwicklung von auffällig viel neuer microRNA verbunden ist.
25.11.2022
Klimawandel | Ökologie
Der Klimawandel in den Wäldern Norddeutschlands
Immer mehr Bäume leiden an den Folgen des menschgemachten Klimawandels der vergangenen Jahrzehnte.
24.11.2022
Biochemie | Entwicklungsbiologie | Genetik
Das Erwecken des Genoms
Die Befruchtung einer Eizelle durch ein Spermium ist der Beginn neuen Lebens, die mütterliche und väterliche Erbinformation, die DNA, wird neu kombiniert und speichert den Aufbau des Lebewesens.
24.11.2022
Genetik | Mykologie | Taxonomie
Die Welt der Pilze revolutioniert
Ein internationales Forschungsteam hat unter den bisher bekannten Pilzen und Flechten eine neue Großgruppe identifiziert: Mithilfe von Genom-Sequenzierung konnte nachgewiesen werden, dass über 600 Arten einen gemeinsamen Ursprung haben.
24.11.2022
Insektenkunde | Ökologie
Vegetationsfreie Flächen fördern bodennistende Wildbienen
Über die Nistansprüche bodennistender Wildbienen ist bisher relativ wenig bekannt, obwohl Nistplätze für die Förderung der meisten Wildbienenarten von zentraler Bedeutung sind.