Was Spinnen an der Decke hält

Neues aus der Forschung

Was Spinnen an der Decke hält

Meldung vom 31.01.2019

Forschungsteam der Universität Kiel und des Helmholtz-Zentrums Geesthacht entschlüsseln Details der Haftstrukturen von Spinnenbeinen.


190204-1451_medium.jpg
 
Um herauszufinden, warum sich die Jagdspinne Cupiennius salei so gut an senkrechten Oberflächen halten kann, untersucht das interdisziplinäre Forschungsteam winzige Hafthaare auf den Spinnenbeinen.
Clemens F. Schaber, Silja Flenner, Anja Glisovic, Igor Krasnov, Martin Rosenthal, Hergen Stieglitz, Christina Krywka, Manfred Burghammer, Martin Müller, Stanislav N. Gorb
Hierarchical architecture of spider attachment setae reconstructed from scanning nanofocus X-ray diffraction data
J. R. Soc. Interface 16: 20180692
DOI: http://dx.doi.org/10.1098/rsif.2018.0692


Problemlos klettern Jagdspinnen an senkrechten Oberflächen oder bewegen sich über Kopf an der Decke. Den nötigen Halt geben ihnen rund eintausend winzige Hafthärchen am Ende ihrer Beine. Diese borstenartigen Haare, die sogenannten Setae, bestehen, wie der Spinnenpanzer, vor allem aus Proteinen und dem Vielfachzucker Chitin. Um mehr über ihre Feinstruktur herauszufinden, hat ein interdisziplinäres Forschungsteam aus Biologie und Physik der Christian-Albrechts-Universität zu Kiel (CAU) und des Helmholtz-Zentrums Geesthacht (HZG) den molekularen Aufbau dieser Härchen genauer untersucht. Mit hochenergetischem Röntgenlicht fanden sie heraus, dass die Chitin-Moleküle der Setae speziell angeordnet sind, damit sie den Belastungen beim ständigen Anhaften und Loslösen standhalten. Ihre Ergebnisse könnten die Grundlage für besonders belastbare zukünftige Materialien sein. Erschienen sind sie in der aktuellen Ausgabe der Zeitschrift Journal of the Royal Society Interface.

Beim Laufen und Klettern wirken große Kräfte auf die winzigen, nur wenige hundert Nanometer großen, Kontaktplättchen der Spinnenbeine. Diese Haftstrukturen halten der Beanspruchung mühelos stand. „Künstlich hergestellte Materialien gehen dagegen häufig kaputt“, stellt Professor Stanislav N. Gorb vom Zoologischen Institut der CAU fest. „Wir wollen deshalb herausfinden, warum Spinnenbeine so stabil sind.“ In seiner Arbeitsgruppe „Funktionelle Morphologie und Biomechanik“ untersucht der Zoologe biologische Mechanismen und wie sie künstlich nachgebildet werden könnten.


 
Jagdspinne Cupiennius salei.

Gorb und sein Mitarbeiter, der Zoologe und Biomechaniker Dr. Clemens Schaber, vermuteten, das Geheimnis der stabilen Hafthärchen liege im molekularen Aufbau des Materials. Mit ihren Dimensionen im unteren Mikrometerbereich sind sie jedoch zu klein, um sie mit gängigen Methoden zu untersuchen.

Mit den besten Röntgenstrahlquellen weltweit untersucht

Um ihre These zu überprüfen, arbeiteten die Kieler Wissenschaftler mit Martin Müller zusammen, Professor am Institut für Experimentelle und Angewandte Physik und Leiter des Bereichs Werkstoffphysik am HZG. Gemeinsam mit seinem Team und Doktorandin Silja Flenner untersuchten sie die Hafthärchen der Spinnenart Cupiennius salei mit Methoden der ortsaufgelösten Röntgenbeugung an der European Synchrotron Radiation Facility (ESRF) in Grenoble, Frankreich, und am Deutschen Elektronen-Synchrotron (PETRA III bei DESY) in Hamburg. Diese Speicherringe gehören zu den besten und leistungsfähigsten Röntgenstrahlenquellen weltweit. Dort beschoss das Forschungsteam das Spinnenmaterial mit Röntgenstrahlung. Je nachdem, wie diese Strahlung durch das Material gestreut wird, lassen sich nanometergenaue Rückschlüsse auf die Zusammensetzung des Materials ziehen. „Wir fanden heraus, dass die Chitinmoleküle an der Spitze der winzigen Hafthaaren der Spinne speziell angeordnet sind: Die parallel verlaufende Faserstruktur verstärkt die Hafthärchen“, fasst Müller die Untersuchungen zusammen.



„Außerdem ist bemerkenswert, dass die Chitin-Fasern in anderen Teilen der Spinnenbeine in unterschiedlichen Richtungen verlaufen, ähnlich wie bei Sperrholz. Diese Struktur macht den Schaft des Spinnenbeins in verschiedene Richtungen biegbar“, erklärt Schaber, Erstautor der Studie. Die parallele Ausrichtung der Faser-Moleküle in den Hafthärchen hingegen folgt den Zug- und Druckkräften, die auf sie wirken. So fängt sie die Belastungen auf, die beim Anhaften und Ablösen der Spinnenbeine auftreten.

Bionik: Vorbild für neue belastbare Materialien

Ähnliche Hafthärchen finden sich unter anderem bei Geckos, einer Echsenfamilie. Das Forschungsteam vermutet dahinter deshalb ein zentrales, biologisches Prinzip, um auf verschiedenen Untergründen haften zu können. Für die Entwicklung neuer Materialien mit hoher Belastbarkeit könnte das wegweisend sein. Intelligente Molekülanordnung wie die in den Chitin-Fasern künstlich auf Nanoebene nachzubilden, ist allerdings eine Herausforderung für die Bionikforschung. „Die Natur verwendet andere Methoden: Ein biologisches Material und seine Struktur wachsen parallel, während das in der künstlichen Herstellung nacheinander ablaufende Schritte sind“, so Gorb. Neue Technologien der additiven Fertigung wie 3D-Druck auf der Nanoskala könnten eines Tages womöglich zur Entwicklung völlig neuartiger von der Natur inspirierter Materialien beitragen.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 7 Tage

14 Meldungen

Meldung vom 15.02.2019

Psychologie: Nette Ausbeuter setzen sich durch

Gegen Menschen, die Kooperation und Egoismus raffiniert einsetzen, ist kein Kraut gewachsen.

Meldung vom 15.02.2019

Ameisen gegen Elefanten: Wie die Insekten die Fressfeinde von Akazien aufspüren

Ameisen beschützen afrikanische Akazien gegen Fressfeinde wie Elefanten, Giraffen oder Antilopen und erhalten ...

Meldung vom 14.02.2019

In Zebrafischeiern hemmt die am schnellsten wachsende Zelle ihre Nachbarn durch mechanische Signale

Wissenschaftler des IST Austria entdecken neuen Mechanismus für die laterale Hemmung von Zellen - Studie in C ...

Meldung vom 14.02.2019

Vögel speichern Erinnerungen möglicherweise anders ab als Säugetiere

Vögel haben ein gutes Gedächtnis, aber im Gegensatz zu Säugetieren ist bisher noch kaum etwas darüber beka ...

Meldung vom 14.02.2019

Werkzeug oder kein Werkzeug

Flexibler Werkzeuggebrauch bei Tieren steht in enger Verbindung mit höheren mentalen Prozessen, wie zum Beisp ...

Meldung vom 14.02.2019

Schwänzeltanz ist für Honigbienen in manchen Kulturlandschaften nicht mehr hilfreich

Soziale Kommunikation im Bienenstaat: Bienen lernen zu beurteilen, welchen Nutzen die Informationen aus einem ...

Meldung vom 13.02.2019

Neu entdeckte Schildkrötenart steht kurz vor der Ausrottung

Senckenberg-Wissenschaftler Uwe Fritz hat gemeinsam mit einem internationalen Team eine neue Art aus der Famil ...

Meldung vom 13.02.2019

Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakt ...

Meldung vom 13.02.2019

Saisonale Klimaeffekte beeinflussen das Schicksal der Erdmännchen

Bedroht ein trockeneres und heisseres Klima die Erdmännchen in der Kalahari-Wüste? For-schende der Universit ...

Meldung vom 19.02.2019

Wie Schlaf das Immunsystem stärkt

Wissenschaftler der Universität Tübingen weisen neuen Mechanismus nach, mit dem unser Abwehrsystem im Schlaf ...

Meldung vom 12.02.2019

China und Indien Spitzenreiter beim Begrünen der Erde

Die Erde wird grüner – und eine wesentliche Rolle für den seit Jahrzehnten beobachteten Zuwachs von Blattw ...

Meldung vom 11.02.2019

Egoistische Chromosomen machen schädliche Pilze angreifbar

Kiel Evolution Center entdeckt grundlegend neue Züge in den Vererbungsmechanismen von pflanzenschädlichen Pi ...

Meldung vom 07.02.2019

Sind sich Fische ihrer selbst bewusst

Putzerfische scheinen sich selbst im Spiegel zu erkennen.

Meldung vom 07.02.2019

Älteste Körnerfresser entdeckt - Früheste Verwandte der Sperlingsvögel beschrieben

Senckenberg-Wissenschaftler Gerald Mayr hat gemeinsam mit US-amerikanischen Kollegen zwei neue fossile Vogelar ...


16.01.2019
Plötzlich gealtert

19.12.2018
Baum der Schrecken
07.11.2018
Plastik im Fisch
28.09.2018
Gestresste Pflanzen

13.08.2018
Wie Vögel lernen

15.06.2018
Primaten in Gefahr
24.05.2018
Störche im Aufwind

04.02.2019
Kenne Deinen Fisch!
04.02.2019
Leben ohne Altern
04.02.2019
Lebensraum Käse
04.02.2019
Domino im Urwald
04.02.2019
Trend-Hobby Imker
04.02.2019
Wie Bienen riechen

Newsletter

Neues aus der Forschung