Geheimnis um die Langlebigkeit von Bäumen enthüllt - Forscher sequenzieren das Genom der Stieleiche

Neues aus der Forschung

Meldung vom 19.06.2018

Ein internationales Konsortium unter der Leitung des französischen Agrarforschungsinstituts INRA und des französischen Kommissariats für Atomenergie und Alternative Energien CEA hat das Genom der Stieleiche sequenziert. Die kürzlich in Nature Plants veröffentlichte Arbeit, an der auch drei Forschende aus Mitteldeutschland beteiligt waren, identifiziert zwei wichtige genomische Eigenschaften, die für die Langlebigkeit dieser Baumart sorgen. Zum einen ist das die Existenz besonders zahlreicher und vielfältiger Resistenzgene, die den Bäumen die Möglichkeit gibt, sich gegen zahlreiche Feinde zu wehren. Zum anderen treten somatische Mutationen auf, die in die nächste Generation vererbt werden.


180629-1827_medium.jpg
 
150 Jahre alte Eichen in der Forêt domaniale de Bercé
Plomion C. et al.
Oak genome reveals facets of long lifespan
Nature Plants, 2018
DOI: 10.1038/s41477-018-0172-3


Bäume nehmen einen zentralen Platz in unserem Kultur- und Naturerbe ein. Sie sind in der Landschaft allgegenwärtig und leisten Menschen unbezahlbare Dienste. Ihre Langlebigkeit und ihre Fähigkeit Veränderungen der Umwelt zu überstehen, machen sie zu wichtigen Symbolen sakraler, mystischer und künstlerischer Darstellungen von Stabilität, Widerstandsfähigkeit und der Dauerhaftigkeit des Lebens.

Wissenschaftlerinnen und Wissenschaftler aus Frankreich, Schweden, Spanien, den USA und Deutschland befassten sich nun gemeinsam mit den genetischen Grundlagen der Langlebigkeit. Sie sequenzierten das Genom der Stieleiche, einer von 400 Eichenarten, mithilfe von modernen Hochdurchsatz-Sequenzierungstechnologien. Dies ermöglichte es, die 750 Millionen Nukleotide zu sequenzieren und zusammenzusetzen, aus denen das Genom besteht. Die genetische Vielfalt dieser weit verbreiteten europäischen Eichenart ist zehnmal größer als die des menschlichen Genoms.


 
Wissenschaftler des UFZ nutzen genetisch identische in-vitro-Stecklinge der Stieleiche und analysieren, wie sie ihre Gene bei unterschiedlichen Umwelteinflüssen regulieren.

Das Arsenal an Abwehrgenen gegen Schädlinge – ein möglicher Schlüssel zur Langlebigkeit

Die Untersuchung des Eichengenoms zeigte, dass es insgesamt 26.000 Gene enthält. 51 Prozent davon bestehen aus springenden genetischen Elementen – DNA-Sequenzen, die ihre Position innerhalb des Genoms ändern können. Zudem ist mit 36 Prozent ein ungewöhnlich hoher Anteil in aneinander gereihten Gengruppen organisiert, während es bei anderen Pflanzen im Durchschnitt lediglich 15 Prozent sind. Die Resistenzgene der Stieleiche scheinen von diesen Tandemduplikationen zu profitierten. Ein Vergleich der Genome von krautigen Pflanzen (zum Beispiel Acker-Schmalwand, Soja, Kartoffel, Wassermelone) und mehrjährigen Gehölzen (zum Beispiel Eiche, Pappel, Eukalyptus, Pfirsich) machte darüber hinaus deutlich, dass dieser Mechanismus zur Vervielfältigung von Resistenzgenen nicht auf Eichen beschränkt ist, sondern bei allen untersuchten Baumarten auftritt.

Sind Bäume genomische Mosaike?

In mehrzelligen Organismen häufen sich während ihres Wachstums somatische Mutationen, also Mutationen, die nicht in den Fortpflanzungszellen auftreten, sondern in den somatischen Zellen. Das extrem lange Leben der Bäume – manche Arten werden Jahrhunderte alt – und die Dauerhaftigkeit ihres im Laufe des Lebens entwickelten Gewebes machen sie zu perfekten Modellen, um diesem Phänomen auf den Grund zu gehen. Das Forscherteam untersuchte die Häufigkeit somatischer Mutationen, indem es die Genome aus Proben von unterschiedlich alten Zweigen einer hundertjährigen Eiche verglich. Dabei konnten die Forscher seltene somatische Mutationen feststellen, und zeigen, dass diese in die nächste Generation vererbt werden können. Zukünftig geht es darum zu verstehen, ob dieser Motor der Diversität Einzelpflanzen einen Selektionsvorteil verschaffen kann.



Womit haben sich die deutschen Wissenschaftler befasst?

Vom UFZ-Department Bodenökologie aus Halle (Saale) waren drei Wissenschaftlerinnen und Wissenschaftler am internationalen Konsortium beteiligt, eine davon wurde über das Deutsche Zentrum für Integrative Biodiversitätsforschung (iDiv) finanziert. Der Beitrag der mitteldeutschen Forscher bestand darin, Gene zuzuordnen, die für die Symbiose zwischen Baumwurzeln und Bodenpilzen relevant sind, und insbesondere den Austausch von Zucker regulieren. Das Hallenser Team brachte darüber hinaus seine eigene Gendatenbank ins Projekt ein. Sie enthält Informationen zur Regulation von Eichengenen bei Wechselwirkungen zwischen Eichenblättern oder -wurzeln und Tieren oder Mikroorganismen. Basis dafür ist ein eigener Klon der Stieleiche, der am UFZ durch in-vitro-Kultur seit Jahren vermehrt wird.

„Die zwei genomischen Merkmale geben uns Hinweise darauf, warum Bäume, die so vielen biotischen Wechselwirkungen ausgesetzt sind, es schaffen, sich in Europa so großräumig zu verbreiten. Dieses Wissen unterstützt unsere eigenen UFZ-Forschungsarbeiten, bei denen ein Eichenklon als Phytometer an verschiedenen Standorten in Europa freigesetzt wird. Wir wollen so untersuchen, wie sich Waldbäume als langlebige Organismen an Umweltänderungen anpassen“ sagt Dr. Sylvie Herrmann, eine der Mitautorinnen der Studie.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 7 Tage

www.biologie-seite.de 14 Meldungen

Meldung vom 26.06.2019

Kein Platz für Wölfe

Wölfe lösen beim Menschen gleichermaßen Angst und Faszination aus. Das Raubtier wird bei Nutztierhaltern, J ...

Meldung vom 25.06.2019

Studie: Spinat-Extrakt führt zu Leistungssteigerungen im Sport

Ein Extrakt aus Spinat kann einer internationalen Studie unter Beteiligung der Freien Universität Berlin zufo ...

Meldung vom 25.06.2019

Forscher der Humboldt-Universität entschlüsseln, wie Blütenpflanzen ihren Stoffwechsel drosseln

Artikel im Wissenschaftsjournal eLife erschienen.

Meldung vom 25.06.2019

Upcycling in Symbiose: Von „minderwertigen“ Substanzen zu Biomasse

Forschende entdecken den ersten bekannten schwefeloxidierenden Symbionten, der rein heterotroph lebt.

Meldung vom 25.06.2019

Nicht nur der Wind zeigt den Weg

Wenn der südafrikanische Dungkäfer seine Dungkugel vor sich her rollt, muss er den Weg möglichst präzise k ...

Meldung vom 25.06.2019

Rätsel um Ursprung der europäischen Kartoffel gelöst

Woher stammt die europäische Kartoffel? Pflanzen, die im 19. Jahrhundert auf einer Expedition des britischen ...

Meldung vom 24.06.2019

Molekulare Schere stabilisiert das Zell-Zytoskelett

Forschende des Paul Scherrer Instituts PSI in Villigen haben erstmals die Struktur wichtiger Enzyme in menschl ...

Meldung vom 24.06.2019

Solarium für Hühner - Wie sich der Vitamin-D-Gehalt von Eiern erhöhen lässt

Viele Menschen leiden unter einem Vitamin-D-Mangel. Das kann brüchige Knochen und ein erhöhtes Risiko für A ...

Meldung vom 21.06.2019

Genom der Weisstanne entschlüsselt: Baumart für den Wald der Zukunft

Die Weisstanne ist eine wichtige Baumart im Hinblick auf den Klimawandel. Um sie besser erforschen zu können, ...

Meldung vom 21.06.2019

Künstliche Intelligenz lernt Nervenzellen am Aussehen zu erkennen

st es möglich, das Gehirn zu verstehen? Noch ist die Wissenschaft weit von einer Antwort auf diese Frage entf ...

Meldung vom 21.06.2019

Pilz produziert hochwirksames Tensid

Forschungsteam der Friedrich-Schiller-Universität Jena entdeckt im Bodenpilz Mortierella alpina eine bisher u ...

Meldung vom 20.06.2019

Zufall oder Masterplan

Gemeinsame Pressemitteilung der Christian-Albrechts-Universität zu Kiel und des Max-Planck-Instituts für Ev ...

Meldung vom 20.06.2019

Systeme stabil halten

Sowohl die Natur als auch die Technik sind auf integrierende Feedback-Mechanismen angewiesen. Sie sorgen dafü ...

Meldung vom 19.06.2019

Wie sich Bakterien gegen Plasmabehandlung schützen

Angesichts von immer mehr Bakterien, die gegen Antibiotika resistent werden, setzt die Medizin unter anderem a ...