Einblicke in das Tarnverhalten von Sepien

Neues aus der Forschung

Meldung vom 17.10.2018

Die computergestützte Bildanalyse von sich verhaltenden Sepien zeigt Prinzipien der Steuerung und Entwicklung einer biologischen Tarnkappe. Die einzigartige Fähigkeit der Sepien, Kalmare und Oktopoden, sich zu verstecken, indem sie die Farben und Texturen ihrer Umgebung nachahmen, hat Naturwissenschaftler seit Aristoteles fasziniert. Als einzige Tierart kontrollieren diese Mollusken ihr Aussehen durch direkte Einwirkung von Neuronen auf expandierbare Pixel, die sich millionenfach in ihrer Haut befinden. Wissenschaftler des Max-Planck-Instituts für Hirnforschung und des Frankfurt Institute for Advanced Studies/Goethe Universität nutzten diese Verbindung zwischen Neuronen und Pixeln, um einen Blick in das Gehirn von Sepien zu werfen und daraus die mutmaßliche Struktur von Kontrollnetzwerken durch Analyse der Dynamik von Hautmustern abzuleiten.


181022-1455_medium.jpg
Reiter, S., Hülsdunk, P., Woo, T., Lauterbach, M.A., Eberle, J.S., Akay, L.A, Longo, A., Meier-Credo, J., Kretschmer, F., Langer, J.D., Kaschube, M. and Laurent, G.
Elucidating the control and development of skin patterning in cuttlefish
Nature 562: 361-366
DOI: https://doi.org/10.1038/s41586-018-0591-3

 
Sepia officinalis

Sepien, Kalmare und Oktopoden bilden eine Gruppe von Meeresmollusken, die Kopffüßer genannt werden und einst Ammoniten umfassten, die heute nur noch als Spiralfossilien aus der Kreidezeit bekannt sind. Moderne coleoide Kopffüßer verloren vor etwa 150 Millionen Jahren ihre äußeren Schalen und wurden zunehmend zu aktiven Räubern. Mit dieser Entwicklung ging eine massive Vergrößerung ihres Gehirns einher: Moderne Sepien und Oktopoden haben die größten Gehirne (im Verhältnis zur Körpergröße) unter den wirbellosen Tieren, vergleichbar mit Fischen oder Reptilien. Sie nutzen diese großen Gehirne, um eine Reihe von intelligenten Verhaltensweisen auszuführen, einschließlich der einzigartigen Fähigkeit, ihr Hautmuster zu verändern, um sich zu tarnen oder zu verstecken.

Kopffüßer erzielen ihre Tarnung durch direkte Einwirkung ihres Gehirns auf spezialisierte Hautzellen - auch Chromatophore genannt -, die als biologische "Pixel" auf einem weichen Displaysystem - ihrer Haut - wirken. Diese Eigenschaft ist einzig den Kopffüßern zu eigen. Sepien verfügen über bis zu Millionen von Chromatophoren, von denen jedes expandiert und kontrahiert werden kann, um lokale Veränderungen im Hautkontrast zu erzeugen. Chromatophoren gibt es auch in verschiedenen Farben. Durch die Kontrolle dieser Chromatophoren können Sepien ihr Aussehen in Bruchteilen einer Sekunde verändern. Sie nutzen diese Eigenschaft, um sich vor Räubern zu schützen, selbst zu jagen, aber auch um zu kommunizieren.

Um sich zu tarnen, passen sich Tintenfische nicht Pixel für Pixel ihrer lokalen Umgebung an. Stattdessen scheinen sie durch visuelle Wahrnehmung eine statistische Annäherung an ihre Umgebung zu erzielen und nutzen diese Heuristiken, um eine adaptive Tarnung aus einem vermeintlich großen, aber begrenzten Repertoire an wahrscheinlichen Mustern auszuwählen, die im Laufe des Evolutionsprozesses selektiert wurden. Die biologischen Lösungen zu diesem Problem der statistischen Abgleichung sind derzeit unbekannt. Da aber Sepien dieses Problem lösen können, sobald sie aus dem Ei schlüpfen, sind die Lösungen wahrscheinlich angeboren, in das Gehirn der Sepien eingebettet und relativ einfach. Ein Team von Wissenschaftlern vom Max-Planck-Institut für Hirnforschung und vom Frankfurt Institute for Advanced Studies (FIAS/Goethe-Universität), hat unter Leitung von Gilles Laurent Techniken entwickelt, die anfangen, diese Lösungen aufzuzeigen.

Die Chromatophore der Sepien sind spezialisierte Zellen, die einen elastischen Beutel mit Farbpigmentgranulaten enthalten. Jedes Chromatophor ist an winzigen sternförmig angeordneten Muskeln befestigt, die von einer kleinen Zahl von Motoneuronen im Gehirn gesteuert werden. Wenn diese Motoneurone aktiviert werden, ziehen sich die Muskeln zusammen, das Chromatophor expandiert und zeigt das Pigment an. Wenn die neuronale Aktivität nachlässt, entspannen sich die Muskeln, der elastische Pigmentbeutel schrumpft zusammen, und die reflektierende Haut darunter wird sichtbar. Da einzelne Chromatophoren Eingang von nur wenigen Motoneuronen erhalten, könnte der Expansionszustand eines Chromatophors ein indirektes Maß für die Aktivität der Motoneuronen liefern.



"Wir haben uns vorgenommen, die Leistung des Gehirns einfach und indirekt zu messen, indem wir die Pixel auf der Haut des Tieres abbilden“, sagt Laurent (MPI für Hirnforschung). Tatsächlich bot die Beobachtung des Verhaltens von Sepien mit chromatophorer Auflösung die einzigartige Möglichkeit, indirekt sehr große Populationen von Neuronen in sich frei verhaltenden Tieren "abzubilden". Sam Reiter (MPI für Hirnforschung), Erstautor dieser Studie, und seine Co-Autoren zogen Rückschlüsse auf die Aktivität der Motoneuronen, indem sie die Details der chromatophoren Co-Fluktuationen analysierten. So konnten sie durch die Analyse der Co-Variationen dieser abgeleiteten Motoneuronen die Struktur noch höherer Steuerungsstufen vorhersagen und durch detaillierte statistische Analyse des Chromatophoren-Outputs das Sepiengehirn immer tiefer "abbilden".

Der Weg dorthin erforderte viele Jahre harter Arbeit, einige gute Erkenntnisse und ein paar glückliche Umstände. Eine wichtige Voraussetzung für den Erfolg war, dass es gelang, Zehntausende von einzelnen Chromatophoren gleichzeitig mit 60 hochauflösenden Bildern pro Sekunde abzubilden, und jedes Chromatophor von einem Bild zum nächsten, von einem Muster zum nächsten, von einer Woche zur nächsten, weiter zu verfolgen, während das Tier atmete, sich bewegte, sein Aussehen veränderte, wuchs und ständig neue Chromatophoren einbaute. Eine Schlüsseleinsicht war es, „zu erkennen, dass die physische Anordnung der Chromatophore auf der Haut unregelmäßig genug ist, um lokal einzigartig zu sein, wodurch lokale ‚Fingerabdrücke’ für das Zusammensetzen von Bildern entstehen“, sagt Matthias Kaschube vom FIAS/GU. Durch iterativen und stückweisen Bildvergleich wurde es möglich, Bilder so zu anzupassen, dass alle Chromatophore richtig ausgerichtet waren und nachverfolgt werden konnten, selbst wenn ihre individuellen Größen unterschiedlich waren - wie es bei Veränderungen von Hautmustern der Fall ist - und sogar wenn neue Chromophore erschienen - wie es von einem Tag auf den nächsten der Fall ist, wenn das Tier wächst.

Mit Erkenntnissen wie dieser und mehreren Supercomputern gelang es Laurents Team, ihr Ziel zu erreichen und somit in das Gehirn des Tieres und sein Tarnkontrollsystem zu blicken. Dabei machten sie auch unerwartete Beobachtungen. Wenn ein Tier beispielsweise sein Aussehen ändert, ändert es dieses in einer sehr spezifischen Weise durch eine Folge genau bestimmter Zwischenmuster. Diese Beobachtung ist wichtig, da sie interne Einschränkungen bei der Mustererzeugung nahelegt und somit versteckte Aspekte der neuronalen Steuerschaltungen offenbart. Auch fanden die Wissenschaftler heraus, dass Chromatophore systematisch ihre Farbe im Laufe der Zeit ändern, und dass die für diese Änderung erforderliche Zeit an die Geschwindigkeit der Produktion neuer Chromatophore gekoppelt wird wenn das Tier wächst; so bleibt der relative Anteil jeder Farbe konstant. Schließlich haben sie aus der Beobachtung dieser Entwicklung minimale Regeln abgeleitet, die die Morphogenese der Haut in dieser und möglicherweise allen anderen Arten von coleoiden Kopffüßern erklären könnten.

Diese Studie eröffnet eine Vielzahl neuer Fragen und Möglichkeiten. Einige betreffen die Texturwahrnehmung und sind für das wachsende Feld der theoretischen kognitiven Neurowissenschaften relevant. Andere betreffen die Beschreibung des genauen Zusammenhangs zwischen Hirnaktivität und Verhalten, ein Forschungsfeld, das Neuroethologie genannt wird. Noch andere betreffen die zellulären Entwicklungsregeln der Gewebemorphogenese. Schließlich öffnet diese Arbeit ein Fenster zum Gehirn von Tieren, deren Abstammungslinie sich vor über 540 Millionen Jahren von unserer getrennt hat. Das Kopffüßer-Gehirn bietet somit eine einzigartige Gelegenheit, die Entwicklung einer anderen Form der Intelligenz zu untersuchen, die auf einer Geschichte basiert, die seit über einer halben Milliarde Jahren völlig unabhängig von der der Wirbeltierlinie verläuft.




Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 7 Tage

www.biologie-seite.de 14 Meldungen

Meldung vom 17.05.2019

Echoortung von Fledermäusen - Exzellente Navigation mit wenig Information

LMU-Forscher widerlegen bisherige Annahmen über die Echoortung: Fledermäuse haben deutlich weniger räumlich ...

Meldung vom 17.05.2019

Neues Petersilien-Virus von Braunschweiger Forschern entdeckt space

Neues Petersilien-Virus kommt im Raum Braunschweig und anderen Teilen Deutschlands vor.

Meldung vom 16.05.2019

Bettgenosse gesucht: Wer war der erste Wirt der Bettwanzen

Ein internationales Team von Wissenschaftlern unter der kooperativen Leitung des TUD Biologen Prof. Klaus Rein ...

Meldung vom 15.05.2019

Schimpansen graben mit Werkzeugen nach Futter

Forschungsteam filmt im Zoo erstmals, wie die Menschenaffen vorgehen, um an vergrabene Leckereien zu kommen.

Meldung vom 15.05.2019

Übersatte Bakterien machen den Menschen krank

SFB 1182-Forschungsteam schlägt in einer neuen Hypothese vor, dass Entzündungskrankheiten durch ein Nahrungs ...

Meldung vom 15.05.2019

Große Fragen zur Rolle mikroskopischen Lebens für unsere Zukunft

Wie Mikroorganismen die dynamische Entwicklung unserer Erde beeinflussen.

Meldung vom 15.05.2019

Wälder tragen weniger zum Klimaschutz bei als vermutet

Eine Studie mit Beteiligung der Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL könnte ein Dämp ...

Meldung vom 15.05.2019

Ausgezirpt - Drastischer Biomasseverlust bei Zikaden in Deutschland

In der April- Ausgabe der vom Bundesamt für Naturschutz herausgegebenen Zeitschrift „Natur und Landschaft ...

Meldung vom 14.05.2019

Relaisstation im Gehirn steuert unsere Bewegungen

Die Relaisstation des Gehirns, die Substantia nigra, beherbergt verschiedene Arten von Nervenzellen und ist f ...

Meldung vom 14.05.2019

Archaeopteryx bekommt Gesellschaft

Forscher der Bayerischen Staatssammlung für Paläontologie und Geologie (SNSB-BSPG) sowie der LMU München be ...

Meldung vom 14.05.2019

Geschlechtsreife Aale bauen ihre Knochen ab

Um zu ihren Fortpflanzungsgebieten zu gelangen, schwimmen Europäische Aale mehrere Tausend Kilometer auf die ...

Meldung vom 13.05.2019

Universität Stuttgart benennt neue Bärtierchen-Art: Milnesium inceptum entdeckt

Eine neue Bärtierchen-Art wurde von Dr. Ralph Schill vom Institut für Biomaterialien und biomolekulare Syste ...

Meldung vom 13.05.2019

Anglerinnen und Angler sorgen für Fischartenvielfalt im Baggersee

Forschende des Leibniz-Instituts für Gewässerökologie und Binnenfischerei (IGB) haben zusammen mit Fischere ...

Meldung vom 09.05.2019

Wie Stammzellen ein Gehirn korrekter Größe und Zusammensetzung bauen

Im Laufe der Gehirnentwicklung erzeugen Stammzellen unterschiedliche Typen von Neuronen zu unterschiedlichen Z ...


03.05.2019
Eine Frage der Zeit
24.04.2019
Kraftwerk ohne DNA

06.03.2019
Bindung mit Folgen
16.01.2019
Plötzlich gealtert

19.12.2018
Baum der Schrecken
07.11.2018
Plastik im Fisch
28.09.2018
Gestresste Pflanzen

13.08.2018
Wie Vögel lernen

15.06.2018
Primaten in Gefahr
24.05.2018
Störche im Aufwind
22.10.2018
Kenne Deinen Fisch!
22.10.2018
Leben ohne Altern
22.10.2018
Lebensraum Käse
22.10.2018
Domino im Urwald
22.10.2018
Trend-Hobby Imker
22.10.2018
Wie Bienen riechen

Newsletter

Neues aus der Forschung