Das Zellskelett des Malaria-Erregers unter dem Supermikroskop

Neues aus der Forschung

Meldung vom 22.05.2014

Erster Schritt zu maßgeschneiderten Medikamenten gegen Infektionskrankheit


140522-0314_medium.jpg
 
Die Anopheles-Mücke überträgt den Plasmodium-Parasiten, der Malaria verursacht.
CDC/James Gathany
Juha Vahokoski, Saligram Prabhakar Bhargav, Ambroise Desfosses, Maria Andreadaki, Esa-Pekka Kumpula, Silvia Muñico Martinez, Alexander Ignatev, Simone Lepper, Friedrich Frischknecht, Inga Sidén-Kiamos, Carsten Sachse und Inari Kursula Structural Differences Explain Diverse Functions of Plasmodium Actins PLOS Pathogens, 2014
DOI: 10.1371/journal.ppat.1004091

Die Tropenkrankheit Malaria wird durch den Parasiten Plasmodium verursacht. Für das Überleben und die Verbreitung der Plasmodien spielt das Protein Aktin eine wichtige Rolle. Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) haben hochauflösende Methoden der Strukturbiologie angewendet, um verschiedene Versionen dieses Proteins in dem Parasiten genauer zu untersuchen. Ihre in der Zeitschrift „PLOS Pathogens“ veröffentlichten Ergebnisse könnten zukünftig dazu beitragen, maßgeschneiderte Medikamente gegen Malaria zu entwickeln – einer Krankheit, die jährlich über eine halbe Million Opfer fordert.

Malaria ist eine lebensbedrohliche Infektionskrankheit. Die Weltgesundheitsorganisation schätzt, dass es im Jahr 2012 rund 207 Millionen Malariaerkrankte gab; am häufigsten trifft es Kinder in Afrika. Eine zugelassene Impfung gibt es bislang nicht. Die Krankheit wird durch Plasmodien verursacht – einzellige Parasiten, die von Moskitos übertragen werden. Durch einen Stich gelangen die Erreger in den Menschen und rufen dort typische Symptome wie periodisch auftretendes Fieber, Übelkeit und Kopfschmerzen hervor.

Damit Plasmodien in menschliche Zellen eindringen und sie wieder verlassen können, müssen sie beweglich sein. Dazu nutzen sie ein Strukturprotein namens Aktin. Aktin kommt in fast allen Lebewesen vor und ist dort eines der häufigsten Proteine. In der Zelle übernimmt es viele Aufgaben: Es verleiht ihnen Stabilität, ermöglicht Zellteilung und sorgt auch dafür, dass sich einzelne Zellen fortbewegen können. Das dynamische Verhalten, das für diese Vorgänge notwendig ist, kommt dadurch zustande, dass sich einzelne kugelförmige Aktin-Moleküle zu fadenähnlichen Strukturen, sogenannten Filamenten, zusammenschließen können. Der Malaria-Erreger besitzt zwei Versionen, Aktin I und Aktin II, die sich stark voneinander unterscheiden. Obwohl diese Strukturproteine so wichtig für die Infektiosität des Erregers sind, konnten Wissenschaftler bis heute keine Filamentbildung in Plasmodien nachweisen.

Wissenschaftlern des HZI, des Deutschen Elektronen-Synchrotrons (DESY) und des European Molecular Biology Laboratory (EMBL) gelang es nun gemeinsam mit internationalen Partnern, die Aneinanderreihung von Aktin II-Proteinen des Parasiten zu Filamenten zu beobachten. Dazu nutzten sie Elektronenmikroskopie, die die Auflösungsgrenze der klassischen Lichtmikroskopie überwindet. Männliche Malaria-Erreger, in denen die Forscher Aktin II ausgeschaltet hatten, konnten keine reifen Keimzellen mehr bilden und sich folglich nicht fortpflanzen und verbreiten. Nur eine Aktin-Variante zu besitzen, reicht hierfür offenbar nicht aus. Welche Rolle die Filamente bei der Keimzellreifung spielen, ist nach wie vor unklar. Doch warum verhalten sich die beiden Proteine so unterschiedlich?

Um diese Frage zu beantworten, entschlüsselte das Forscherteam den Aufbau der kugelförmigen Proteine mithilfe von Röntgenstrahlen. „Wir konnten die Strukturen von Aktin I und Aktin II mit sehr hoher Auflösung bestimmen – bis auf 1,3 bzw. 2,2 Ångström. Damit befinden wir uns in der Größenordnung von einzelnen Atomen“, sagt Projektleiterin Prof. Inari Kursula. „So haben wir festgestellt, dass sich beide Varianten mehr unterscheiden als es in anderen Lebewesen je beobachtet wurde.“ In dieser hohen Auflösung konnten die Forscher Proteinbereiche identifizieren, die das unterschiedliche Verhalten hervorrufen. „Wir verstehen jetzt, dass sich die Aktin-Filamente der Plasmodien stark von anderen Aktin-Filamenten, beispielsweise denen des Menschen, unterscheiden und dass sie auf völlig andere Weise aufgebaut werden als diese. Da wir nun die strukturelle Basis dafür kennen, können wir nach Wegen suchen, das Zellskelett des Parasiten gezielt zu beeinflussen“, sagt Kursula. Dieses Wissen könnte in Zukunft dazu beitragen, maßgeschneiderte Malaria-Medikamente zu entwerfen.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019 13:47

Mieser Fraß: Wie Mesozooplankton auf Blaualgenblüten reagiert

Warnemünder MeeresforscherInnen ist es mithilfe der Analyse von stabilen Stickstoff-Isotopen in Aminosäuren ...

Meldung vom 17.01.2019 13:41

Einblicke in das Wachstum einer tropischen Koralle

Kalkbildung in Korallen: Ein doppelter Blick und dreifache Messungen erlauben neue Einblicke in das Wachstum e ...

Meldung vom 17.01.2019 13:31

Plötzlich gealtert

Coralline Rotalgen gibt es seit 130 Millionen Jahren, also seit der Kreidezeit, dem Zeitalter der Dinosaurier. ...

Meldung vom 17.01.2019 13:19

Mehr Platz für Vögel und Schmetterlinge in der Landwirtschaft

Um den schwindenden Bestand von Vögeln und Schmetterlingen im Schweizer Kulturland wieder zu erhöhen, müsse ...

Meldung vom 17.01.2019 13:14

Ernst Haeckel als Erzieher

Biologiedidaktiker der Uni Jena geben Reprint der Dodel-Schrift „Ernst Haeckel als Erzieher“ mit heraus.

Meldung vom 17.01.2019 13:10

Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken d ...

Meldung vom 17.01.2019 13:04

Menschliche Darmflora durch Nanopartikel in der Nahrung beeinflussbar

Neue Studie der Universitätsmedizin Mainz über die (patho)biologischen Auswirkungen von Nanopartikeln auf da ...

Meldung vom 10.01.2019 19:47

Erster direkter Nachweis eines Wal jagt Wal - Szenarios in früheren Ozeanen

In einer im open-access Journal PLOS ONE publizierten Studie, liefern Manja Voss, Paläontologin am Museum fü ...

Meldung vom 10.01.2019 19:33

Zahnwechsel sorgt bei Elefanten für Jojo-Effekt

Das Gewicht von Zoo-Elefanten schwankt im Laufe ihres erwachsenen Lebens in einem Zyklus von etwa hundert Mona ...

Meldung vom 10.01.2019 19:24

Intensives Licht macht schläfrig

Insekten und Säugetiere besitzen spezielle Sensoren für unterschiedliche Lichtintensitäten. Diese nehmen ge ...

Meldung vom 10.01.2019 19:11

Alpenwanderung mit Folgen: Forscher verifizieren fast 70 Jahre alte genetische Hypothese

An einer Orchideen-Population in Südtirol belegen Forscher der Universitäten Hohenheim, Zürich und Wien die ...

Meldung vom 08.01.2019 17:54

Clevere Tiere upgraden ihr Genom

Puzzlestein in der Evolution der Tintenfische entschlüsselt - Kopffüßer wie Tintenfisch, Oktopus oder Nauti ...

Meldung vom 08.01.2019 17:45

Gekommen, um zu bleiben: Drachenwels aus Ostasien in der bayerischen Donau

Die bayerische Donau ist inzwischen Heimat für viele Fisch- und andere Tierarten, die ursprünglich nie dort ...

Meldung vom 08.01.2019 17:37

Entwicklung eines grösseren Gehirns

Ein Gen, das nur der Mensch besitzt und das in der Großhirnrinde aktiv ist, kann das Gehirn eines Frettchens ...

Meldung vom 07.01.2019 16:31

Bei Blaumeisen beeinflusst das Alter der Weibchen und die Legefolge die Qualität der Eier

Brütende Blaumeisen-Weibchen stimmen die Zusammensetzung ihrer Eier auf die Bedürfnisse der aus ihnen schlü ...

Meldung vom 07.01.2019 16:03

Phytolith- und Wassergehalt von Futterpflanzen beeinflussen Zahnschmelzabrieb von Wirbeltieren

Verschiedene Futterpflanzen reiben den Zahnschmelz von Wirbeltieren unterschiedlich stark ab, was unter andere ...



26.12.2018:
Baum der Schrecken
24.11.2018:
Wenn das Meer blüht
24.11.2018:
Durchsichtige Fliegen
15.11.2018:
Plastik im Fisch
03.10.2018:
Gestresste Pflanzen

13.08.2018:
Wie Vögel lernen
20.07.2018:
Magie im Reagenzglas

18.06.2018:
Primaten in Gefahr
28.05.2018:
Störche im Aufwind
07.05.2018:
Misteln atmen anders

27.03.2018:
Kenne Deinen Fisch!
01.09.2016:
Elefanten im Sinkflug
13.12.2015:
Leben ohne Altern
22.05.2014:
Lebensraum Käse
22.05.2014:
Domino im Urwald
04.04.2014:
Nationalpark Asinara
13.03.2014:
Trend-Hobby Imker
04.09.2013:
Harmloser Terrorvogel
07.02.2013:
Wie Bienen riechen

Newsletter

Neues aus der Forschung