Einbahnstraße für das Salz

Neues aus der Forschung

Meldung vom 20.09.2018

Quinoa hat es als Nahrungsmittel in europäische Supermärkte geschafft. Die robuste Pflanze gedeiht auch auf versalzten Böden. Forscher der Universität Würzburg haben nun herausgefunden, wie sie das Salz entsorgt.


180925-1401_medium.jpg
 
Quinoa speichert Salz in den Blasenhaaren auf ihren Blättern.
Jennifer Böhm, Maxim Messerer, Heike M. Müller, Joachim Scholz-Starke, Antonella Gradogna, Sönke Scherzer, Tobias Maierhofer, Nadia Bazihizina, Heng Zhang, Christian Stigloher, Peter Ache, Khaled A.S. Al-Rasheid, Klaus F.X. Mayer, Sergey Shabala, Armando Carpaneto, Georg Haberer, Jian-Kang Zhu und Rainer Hedrich
Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa
Current Biologie
DOI: https://doi.org/10.1016/j.cub.2018.08.004


Ein Anstieg der Weltbevölkerung bedeutet zugleich einen erhöhten Bedarf an Nahrungsmitteln, der einen Anstieg der landwirtschaftlichen Flächen beinhalten kann. Mehr Landwirtschaft führt jedoch besonders für Nutzpflanzen, wie Mais und Weizen – vor allem in trockenen Regionen – zu vermehrter Bewässerung. Diese führt bei gleichzeitiger Düngung zur Versalzung der Anbaufläche. Um versalzte Böden nutzen zu können, sind Pflanzen von großem Interesse, die von Natur aus salztolerant sind. Zu diesen sogenannten Halophyten zählt das Pseudogetreide Quinoa (Chenopodium quinoa). Quinoa stammt aus den Anden und ist eine äußerst robuste Pflanze. In dem südamerikanischen Gebirge wird das getreideähnliche Gewächs seit 7000 Jahren als Nahrungsmittel genutzt. Die glutenfreien und vitaminreichen Samen haben es mittlerweile auch in die Regale europäischer Supermärkte geschafft.

Quinoa entgiftet Salz mittels Blasenzellen

Die vitamin- und mineralreiche Quinoa bildet Blasenhaare aus, in die das Salz verfrachtet wird. Durch diese morphologische Anpassung wird die Pflanze tolerant gegenüber Salzbelastung. Diese Salzendlager auf der äußeren Zellschicht der Blätter verhindern, dass sich im Blatt giftige Natriumchlorid-Konzentrationen (NaCl-Konzentrationen) – auch als Kochsalz bekannt – anreichern. Unter der Leitung von Professor Rainer Hedrich der Julius-Maximilians-Universität Würzburg (JMU) hat ein internationales Team von Wissenschaftler aus München, Genua (Italien), Hobart (Australien), Shanghai (China) und Riad (Saudi Arabien) nun entschlüsselt, wie Blasenzellen als Salzspeicher arbeiten. Ihre Ergebnisse veröffentlichten die Forscher in der Zeitschrift Current Biology.

Salz-Transport vom Boden in die Salzblase

Wenn Quinoa salzigen Böden ausgesetzt ist, gelangen Natrium- und Chloridionen aus der Wurzel über Spross und Blätter in die Salzblasen, wo sie ihr Ziel in der Speichervakuole finden. Auf dem Weg in die Salzblasen müssen die Ionen diverse Membranbarrieren überwinden. Dies erfolgt über Transportproteine, die auf Natrium- (Na+) und Chloridionen (Cl-) spezialisiert sind.

Im Vergleich zu nicht-salztoleranten Kulturpflanzen, müssen bei Quinoa diese Transportproteine bei steigender Salzbelastung nicht erst neu zusammengebaut werden, sondern sind bereits vorhanden, bevor der Stress einsetzt. „Diese Strategie ermöglicht es Quinoa, das plötzlich auftretende Salz ohne weitere genregulatorische Schritte direkt zur Einlagerungsstätte transportieren zu können“, sagt Hedrich.



Natriumkanal arbeitet nur in eine Richtung

Die Eigenschaften dieses Natriumkanals gewährleisten nicht nur, dass Natriumionen stetig aus dem Blatt in die Blasenzellen aufgenommen und in hohem Maße konzentriert werden können. „Das Besondere ist, dass selbst unter sehr hohen eingelagerten Natriumkonzentrationen ein Rückfluss des Natriums – und somit ein Auslaufen in die Blätter – vermieden wird“, sagt Dr. Jennifer Böhm, Erstautorin der Publikation. Der Natriumkanal arbeitet also wie ein Sicherheitsventil und ist die Schlüsselkomponente der Salzendlagerung in den Salzblasen.

Ist das Kochsalz in den Blättern, müssen die Na+- und Cl--Ionen über die Plasmamembran in den Zellsaft (Zytosol) der Salzblasen transportiert werden. Ebenso wie für das Natriumion wird ein gerichteter Chlorid-Transport in die Zelle sichergestellt.

In Pflanzen sind steigende Natriumchlorid-Konzentrationen im Zytosol toxisch für viele Stoffwechselprozesse. Daher lagert Quinoa das Salz in der dem Stoffwechsel abgelegenen und membranumgrenzten Vakuole ein. Diese zweite Membran, die Natrium- und Chloridionen überqueren müssen, nennt man Tonoplast. Auch hier erfolgt der Transport der Salzkomponenten nur in eine Richtung, wie bei einer Einbahnstraße.

Transfer in das Endlager muss noch erforscht werden

„Diese Arbeit hat uns wichtiges Grundwissen gebracht, um in Zukunft gezielt die Züchtung von salztoleranten Kulturpflanzen anzugehen“, sagt Hedrich. „Wir haben jetzt die molekularen Komponenten der Salzeinlagerung geklärt. In weiteren Forschungen wollen wir nun herausfinden, wie der Transfer des Salzes aus dem Blatt an den Endspeicherort funktioniert“, sagt Böhm. Der Transfer erfolgt über eine kleine tunnelartige Verbindung, den stielähnlichen Zellen zwischen Salzblasen und Blattepidermis.




Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 7 Tage

www.biologie-seite.de 14 Meldungen

Meldung vom 17.05.2019

Echoortung von Fledermäusen - Exzellente Navigation mit wenig Information

LMU-Forscher widerlegen bisherige Annahmen über die Echoortung: Fledermäuse haben deutlich weniger räumlich ...

Meldung vom 17.05.2019

Neues Petersilien-Virus von Braunschweiger Forschern entdeckt space

Neues Petersilien-Virus kommt im Raum Braunschweig und anderen Teilen Deutschlands vor.

Meldung vom 16.05.2019

Bettgenosse gesucht: Wer war der erste Wirt der Bettwanzen

Ein internationales Team von Wissenschaftlern unter der kooperativen Leitung des TUD Biologen Prof. Klaus Rein ...

Meldung vom 15.05.2019

Schimpansen graben mit Werkzeugen nach Futter

Forschungsteam filmt im Zoo erstmals, wie die Menschenaffen vorgehen, um an vergrabene Leckereien zu kommen.

Meldung vom 15.05.2019

Übersatte Bakterien machen den Menschen krank

SFB 1182-Forschungsteam schlägt in einer neuen Hypothese vor, dass Entzündungskrankheiten durch ein Nahrungs ...

Meldung vom 15.05.2019

Große Fragen zur Rolle mikroskopischen Lebens für unsere Zukunft

Wie Mikroorganismen die dynamische Entwicklung unserer Erde beeinflussen.

Meldung vom 15.05.2019

Wälder tragen weniger zum Klimaschutz bei als vermutet

Eine Studie mit Beteiligung der Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL könnte ein Dämp ...

Meldung vom 15.05.2019

Ausgezirpt - Drastischer Biomasseverlust bei Zikaden in Deutschland

In der April- Ausgabe der vom Bundesamt für Naturschutz herausgegebenen Zeitschrift „Natur und Landschaft ...

Meldung vom 14.05.2019

Relaisstation im Gehirn steuert unsere Bewegungen

Die Relaisstation des Gehirns, die Substantia nigra, beherbergt verschiedene Arten von Nervenzellen und ist f ...

Meldung vom 14.05.2019

Archaeopteryx bekommt Gesellschaft

Forscher der Bayerischen Staatssammlung für Paläontologie und Geologie (SNSB-BSPG) sowie der LMU München be ...

Meldung vom 14.05.2019

Geschlechtsreife Aale bauen ihre Knochen ab

Um zu ihren Fortpflanzungsgebieten zu gelangen, schwimmen Europäische Aale mehrere Tausend Kilometer auf die ...

Meldung vom 13.05.2019

Universität Stuttgart benennt neue Bärtierchen-Art: Milnesium inceptum entdeckt

Eine neue Bärtierchen-Art wurde von Dr. Ralph Schill vom Institut für Biomaterialien und biomolekulare Syste ...

Meldung vom 13.05.2019

Anglerinnen und Angler sorgen für Fischartenvielfalt im Baggersee

Forschende des Leibniz-Instituts für Gewässerökologie und Binnenfischerei (IGB) haben zusammen mit Fischere ...

Meldung vom 09.05.2019

Wie Stammzellen ein Gehirn korrekter Größe und Zusammensetzung bauen

Im Laufe der Gehirnentwicklung erzeugen Stammzellen unterschiedliche Typen von Neuronen zu unterschiedlichen Z ...


03.05.2019
Eine Frage der Zeit
24.04.2019
Kraftwerk ohne DNA

06.03.2019
Bindung mit Folgen
16.01.2019
Plötzlich gealtert

19.12.2018
Baum der Schrecken
07.11.2018
Plastik im Fisch
28.09.2018
Gestresste Pflanzen

13.08.2018
Wie Vögel lernen

15.06.2018
Primaten in Gefahr
24.05.2018
Störche im Aufwind
25.09.2018
Kenne Deinen Fisch!
25.09.2018
Leben ohne Altern
25.09.2018
Lebensraum Käse
25.09.2018
Domino im Urwald
25.09.2018
Trend-Hobby Imker
25.09.2018
Wie Bienen riechen

Newsletter

Neues aus der Forschung