Laminarin

Strukturformel
Laminarin
Ausschnitt aus Laminarin, bei dem auch Verzweigungen auftreten (vgl. Text)
Allgemeines
Name Laminarin
Andere Namen

Laminaran

CAS-Nummer 9008-22-4
PubChem

46173707

Kurzbeschreibung beigefarbenes Pulver[1]
Monomer
Monomer Laminaribiose
Summenformel C18H32O16
Molare Masse 504,44 g·mol−1
Eigenschaften
Aggregatzustand fest
Löslichkeit

wasserlösliche und wasserunlösliche Form[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
EUH: keine EUH-Sätze
P: keine P-Sätze [3]
Gefahrstoffkennzeichnung [3]
keine Gefahrensymbole
R- und S-Sätze R: keine R-Sätze
S: keine S-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Laminarin ist eine in der Natur häufig vorkommende chemische Verbindung. Es ist ein zu den (1→3)-β-D-Glucanen gehörendes, je nach Form in Wasser lösliches Polysaccharid. In seiner polymerisierten Form dient es Algen, vor allem Braunalgen und Kieselalgen als Energiespeicher, ähnlich wie die Stärke bei den Landpflanzen.

Aufbau

In unregelmäßiger Folge ist die Hauptkette des Laminarins verzweigt,[4] wobei ein weiteres Glucosemolekül β-(1→6)-verbunden ist.[5] Das Verhältnis von β-(1→3) und β-(1→6)-glykosidisch verknüpften Glucosemolekülen beträgt 15:1.[6]

In verschiedenen Braunalgenarten wurden sowohl lösliche (Laminaria digitata), als auch wasserunlösliche Formen (Laminaria cloustoni und Laminaria hyperborea) gefunden.[2] Der Verzweigungsgrad bestimmt, ob die Verbindung wasserlöslich ist; das wenig verzweigte Laminarin ist löslich.[7] Die wasserlösliche Form besteht aus 23–25 Glucoseeinheiten.[5] Pro 37 (wasserlösliche Form) bzw. 57 (wasserunlösliche Form) Glucoseeinheiten ist das reduzierende Kettenende mit einem Molekül Mannit glycosidisch maskiert.[8][5]

Das Dimer aus zwei Glucoseeinheiten, die (1→3)-β-verknüpft sind, ist die Laminaribiose.

Gewinnung

Laminarin wird in größeren Mengen aus dem Fingertang (Laminaria digitata) gewonnen.

Verwendung und biologische Bedeutung

Bei Tieren erzeugt Laminarin eine Antwort des jeweiligen Immunsystems[9]. Wie viele Algen-Polysaccharide sind sulfatierte Laminarine potente Gerinnungshemmer.[10] Früher wurde Laminarin auch als Arzneistoff zur Behandlung von nervösen Störungen verwendet.[2]

Bei den Braunalgen ist Laminarin ein Reservekohlenhydrat mit ähnlicher Funktion wie die Stärke der Landpflanzen oder das Glykogen bei Tieren. Das Enzym Laminarinase (endo-1,3(4)-β-Glucanase) baut Polysaccharide mit β-1,3- und β-1,4-glycosidisch verbundenen Glucosebausteinen ab.[11]

Belege

  1. Datenblatt Laminarin bei Carl Roth, abgerufen am 14. Dezember 2010.
  2. 2,0 2,1 2,2 J.B. Harborne, H. Baxter : Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants, 1999, CRC Press, ISBN 0-74840620-4.
  3. 3,0 3,1 3,2 Datenblatt Laminarin bei Sigma-Aldrich, abgerufen am 14. Dezember 2010.
  4. P. M. Collins: Dictionary of carbohydrates with CD-ROM. 2. Auflage, CRC Press, 2006, ISBN 978-0-84933829-8, S. 679.
  5. 5,0 5,1 5,2 Rudolf Hänsel, Otto Sticher: Pharmakognosie. Phytopharmazie 9. Auflage, Springer, 2009, ISBN 978-3-642-00962-4, S. 570–571.
  6. Beattie, A., Hirst, EL. und Percival, E. (1961): Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae. In: Biochem J. 79; 531-537; PMID 13688276; PDF (freier Volltextzugriff, engl.)
  7. Waldemar Ternes: Lebensmittel-Lexikon. 4. Auflage, Behr's Verlag, 2005, ISBN 978-3-89947165-6, S. 1033.
  8. R. Hegnauer: Chemotaxonomie der Pflanzen: Band 1: Thallophyten, Bryophyten, Pteridophyten und Gymnospermen. Birkhäuser, 1962, ISBN 978-3-76430164-4, S. 60.
  9. Kim KH et al: Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnol Lett. 28/6/2006 S. 439–446; PMID 16614911.
  10. M. Shanmugan und K.H. Mody: Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Current Science 79/12/2000 S. 1672–1683; Online Version.
  11. H.-D. Belitz, W. Grosch, P. Schieberle: Lehrbuch der Lebensmittelchemie. 6. Auflage, 2007, Springer, ISBN 978-3-540-73201-3, S. 341.

Weblinks

Die News der letzten Tage

22.06.2022
Bionik, Biotechnologie, Biophysik | Insektenkunde
Forschung mit Biss
Wie stark können Insekten zubeißen?
21.06.2022
Klimawandel | Meeresbiologie
Algenmatten im Mittelmeer als Zufluchtsort für viele Tiere
Marine Ökosysteme verändern sich durch den Klimawandel, auch im Mittelmeer.
21.06.2022
Taxonomie | Meeresbiologie
Korallengärten auf der „Mauretanischen Mauer“ entdeckt
Wissenschaftler*innen haben eine neue Korallenart entdeckt: Die Oktokoralle Swiftia phaeton wurde auf der weltweit größten Tiefwasserkorallenhügelkette gefunden.
20.06.2022
Genetik | Insektenkunde
Was ein Teebeutel über das Insektensterben erzählen kann
Man kennt die Szenerie aus TV-Krimis: Nach einem Verbrechen sucht die Spurensicherung der Kripo bis in den letzten Winkel eines Tatorts nach DNA des Täters.
20.06.2022
Mikrobiologie | Physiologie | Primatologie
Darmflora freilebender Assammakaken wird im Alter einzigartiger
Der Prozess ist vermutlich Teil des natürlichen Alterns und nicht auf eine veränderte Lebensweise zurückzuführen.
20.06.2022
Botanik | Evolution
Das Ergrünen des Landes
Ein Forschungsteam hat den aktuellen Forschungsstand zum Landgang der Pflanzen, der vor rund 500 Millionen Jahren stattfand, untersucht.
17.06.2022
Anatomie | Entwicklungsbiologie
Das Navi im Spermienschwanz
Nur etwa ein Dutzend der Millionen von Spermien schaffen den langen Weg durch den Eileiter bis zur Eizelle.
15.06.2022
Botanik | Klimawandel
Trotz Klimawandel: Keine Verschiebung der Baumgrenze
Die Lebensbedingungen für Wälder in Höhenlagen haben sich in den vergangenen Jahrzehnten infolge des Klimawandels signifikant verändert.