Wenn Strom durch Bakterienkabel fließt

Neues aus der Forschung

Meldung vom 08.05.2018

Die Böden der Meere und Süßgewässer sind von vertikalen, zentimeterlangen Ketten aus aneinandergereihten Zellen bestimmter Bakterien durchzogen. Diese Bakterienketten erlauben es den einzelnen Zellen, als vielzelliger Organismus in tiefen, sauerstoffarmen Zonen zu überleben. Damit verbinden sie sich mit der sauerstoffreichen Oberfläche, um Nährstoffe aus tiefen Schichten veratmen zu können. Ein internationales Team um Andreas Schramm von der Aarhus University in Dänemark unter Beteiligung von Forschern um Michael Wagner von der Universität Wien konnte nun erstmal direkt in einzelnen Bakterienkabeln Stromfluss nachweisen.


180511-0525_medium.jpg
 
Phasenkontrastaufnahme von Kabelbakterien.
Jesper T. Bjerga, Henricus T. S. Boschker, Steffen Larsen, David Berry, Markus Schmid, Diego Millo, Paula Tataru, Filip J. R. Meysmand, Michael Wagner, Lars Peter Nielsen, and Andreas Schramm
Long-distance electron transport in individual, living cable bacteria
PNAS
DOI: 10.1073/pnas.1800367115


Schon seit längerem ist bekannt, dass in den Böden von Gewässern Strom fließt. Dafür sind lange Ketten aus zehntausenden Zellen bestimmter Bakterien verantwortlich. "Diese sogenannten Kabelbakterien kommen weltweit in den Sedimenten der Meere, Seen und Flüsse in gigantischen Mengen vor", erläutert Andreas Schramm von der Aarhus University. Obwohl eine einzelne Bakterienzelle nur einen tausendstel Millimeter groß ist, finden sich in den oberen Zentimetern eines Quadratmeters Meeresboden tausende Kilometer an Bakterienkabeln. Trotz zahlreicher Versuche ist es ForscherInnen bislang nicht gelungen, direkt in den Bakterienkabeln Stromfluss nachzuweisen.

Mit Laserlicht dem Strom auf der Spur

Experimente mit Kabelbakterien sind schwierig, da diese noch nicht im Labor "gezüchtet" werden können. "Wir hatten die Idee, die Raman-Mikrospektroskopie einzusetzen, um direkt in einzelnen Bakterienkabeln Stromfluss nachzuweisen", erklärt Michael Wagner vom Department für Mikrobiologie und Ökosystemforschung der Universität Wien. Hierfür bauten die WissenschafterInnen mikroskopisch kleine Kammern, die an beiden Enden jeweils ein Loch enthielten. Eines der Löcher wurde mit Luft gefüllt und das andere mit Schwefelwasserstoff-haltigem Sediment, das Kabelbakterien enthielt. Durch die wassergefüllte Kammer krochen die Kabelbakterien aus dem Sediment zum luftgefüllten Loch und verbanden beide. Damit stellten Wagner und sein Team die natürliche Situation in den Sedimenten sehr gut nach. Anschließend "beschossen" die Mikrobiologen die lebenden Bakterienkabel mit Laserlicht und konnten anhand charakteristischer Verschiebungen der Wellenlänge des gestreuten Lichts den Oxidationszustand kleiner Elektronen-Transportproteine in den Kabeln über ihre gesamte Länge vermessen.

"Wir konnten nachweisen, dass ein Großteil dieser Proteine mit Elektronen beladen ist, wenn wir die Kabel mit einem optischen Skalpell nahe des mit Luft gefüllten Lochs zerschnitten oder den Sauerstoff aus diesem Loch entfernt hatten", so David Berry von der Universität Wien: "Die Kabelbakterien entziehen also dem Schwefelwasserstoff Elektronen und transportieren sie zu dem luftgefüllten Loch, um sie dort auf den Sauerstoff zu übertragen und so Energie zu gewinnen. Sobald die Verbindung zum Sauerstoff experimentell unterbunden wurde, füllten sich die Kabelbakterien mit Elektronen, da sie diese nicht mehr an den Sauerstoff abgeben konnten“. Damit haben die ForscherInnen den Stromfluss in den Kabeln erstmals beweisen können.

Kabelbenutzung durch andere Mikroben?

"Während der Versuche haben wir immer wieder beobachtet, dass sich um die Kabelbakterien regelrechte Bakterienschwärme bilden, in denen andere Bakterien immer wieder systematisch zu den Kabeln hinschwimmen“ berichtet Jesper Bjerg, der Erstautor der Studie von der Universität Aarhus. Dieses Verhalten konnte jedoch nicht mehr beobachtet werden, sobald die Kabelbakterien experimentell vom Kontakt mit Sauerstoff abgeschnitten wurden.

Die MikrobiologInnen vermuten nun, dass vielleicht nicht nur die Kabelbakterien selbst von der Verkabelung der Gewässerböden profitieren, sondern auch viele andere Bakterien. Derzeit versuchen sie mithilfe der Ramanspektroskopie der Interaktion dieser Bakterienschwärme mit den Kabeln auf die Spur zu kommen.


News der letzten 2 Wochen


Meldung vom 17.01.2019 13:47

Mieser Fraß: Wie Mesozooplankton auf Blaualgenblüten reagiert

Warnemünder MeeresforscherInnen ist es mithilfe der Analyse von stabilen Stickstoff-Isotopen in Aminosäuren ...

Meldung vom 17.01.2019 13:41

Einblicke in das Wachstum einer tropischen Koralle

Kalkbildung in Korallen: Ein doppelter Blick und dreifache Messungen erlauben neue Einblicke in das Wachstum e ...

Meldung vom 17.01.2019 13:31

Plötzlich gealtert

Coralline Rotalgen gibt es seit 130 Millionen Jahren, also seit der Kreidezeit, dem Zeitalter der Dinosaurier. ...

Meldung vom 17.01.2019 13:19

Mehr Platz für Vögel und Schmetterlinge in der Landwirtschaft

Um den schwindenden Bestand von Vögeln und Schmetterlingen im Schweizer Kulturland wieder zu erhöhen, müsse ...

Meldung vom 17.01.2019 13:14

Ernst Haeckel als Erzieher

Biologiedidaktiker der Uni Jena geben Reprint der Dodel-Schrift „Ernst Haeckel als Erzieher“ mit heraus.

Meldung vom 17.01.2019 13:10

Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken d ...

Meldung vom 17.01.2019 13:04

Menschliche Darmflora durch Nanopartikel in der Nahrung beeinflussbar

Neue Studie der Universitätsmedizin Mainz über die (patho)biologischen Auswirkungen von Nanopartikeln auf da ...

Meldung vom 10.01.2019 19:47

Erster direkter Nachweis eines Wal jagt Wal - Szenarios in früheren Ozeanen

In einer im open-access Journal PLOS ONE publizierten Studie, liefern Manja Voss, Paläontologin am Museum fü ...

Meldung vom 10.01.2019 19:33

Zahnwechsel sorgt bei Elefanten für Jojo-Effekt

Das Gewicht von Zoo-Elefanten schwankt im Laufe ihres erwachsenen Lebens in einem Zyklus von etwa hundert Mona ...

Meldung vom 10.01.2019 19:24

Intensives Licht macht schläfrig

Insekten und Säugetiere besitzen spezielle Sensoren für unterschiedliche Lichtintensitäten. Diese nehmen ge ...

Meldung vom 10.01.2019 19:11

Alpenwanderung mit Folgen: Forscher verifizieren fast 70 Jahre alte genetische Hypothese

An einer Orchideen-Population in Südtirol belegen Forscher der Universitäten Hohenheim, Zürich und Wien die ...

Meldung vom 08.01.2019 17:54

Clevere Tiere upgraden ihr Genom

Puzzlestein in der Evolution der Tintenfische entschlüsselt - Kopffüßer wie Tintenfisch, Oktopus oder Nauti ...

Meldung vom 08.01.2019 17:45

Gekommen, um zu bleiben: Drachenwels aus Ostasien in der bayerischen Donau

Die bayerische Donau ist inzwischen Heimat für viele Fisch- und andere Tierarten, die ursprünglich nie dort ...

Meldung vom 08.01.2019 17:37

Entwicklung eines grösseren Gehirns

Ein Gen, das nur der Mensch besitzt und das in der Großhirnrinde aktiv ist, kann das Gehirn eines Frettchens ...

Meldung vom 07.01.2019 16:31

Bei Blaumeisen beeinflusst das Alter der Weibchen und die Legefolge die Qualität der Eier

Brütende Blaumeisen-Weibchen stimmen die Zusammensetzung ihrer Eier auf die Bedürfnisse der aus ihnen schlü ...

Meldung vom 07.01.2019 16:03

Phytolith- und Wassergehalt von Futterpflanzen beeinflussen Zahnschmelzabrieb von Wirbeltieren

Verschiedene Futterpflanzen reiben den Zahnschmelz von Wirbeltieren unterschiedlich stark ab, was unter andere ...



26.12.2018:
Baum der Schrecken
24.11.2018:
Wenn das Meer blüht
24.11.2018:
Durchsichtige Fliegen
15.11.2018:
Plastik im Fisch
03.10.2018:
Gestresste Pflanzen

13.08.2018:
Wie Vögel lernen
20.07.2018:
Magie im Reagenzglas

18.06.2018:
Primaten in Gefahr
28.05.2018:
Störche im Aufwind
07.05.2018:
Misteln atmen anders

27.03.2018:
Kenne Deinen Fisch!
01.09.2016:
Elefanten im Sinkflug
13.12.2015:
Leben ohne Altern
22.05.2014:
Lebensraum Käse
22.05.2014:
Domino im Urwald
04.04.2014:
Nationalpark Asinara
13.03.2014:
Trend-Hobby Imker
04.09.2013:
Harmloser Terrorvogel
07.02.2013:
Wie Bienen riechen

Newsletter

Neues aus der Forschung