Neue Methode ermöglicht „Fotografieren“ von Enzymen

Neues aus der Forschung

Meldung vom 08.05.2019

Wissenschaftler der Universität Bonn haben eine Methode entwickelt, mit der ein Enzym gewissermaßen bei der Arbeit „fotografiert“ werden kann. Ihr Verfahren ermöglicht es, die Funktionsweise wichtiger Biomoleküle besser zu verstehen. Die Forscher erhoffen sich zudem Einblicke in die Ursachen bestimmter Enzymstörungen. Die Studie erscheint in der Zeitschrift „Chemistry – A European Journal“, ist aber bereits online abrufbar.


190511-1738_medium.jpg
 
Prof. Dr. Olav Schiemann (links) und Dr. Dinar Abdullin an der Messapparatur im Institut für Physikalische und Theoretische Chemie der Universität Bonn.
D. Abdullin, H. Matsuoka, M. Yulikov, N. Fleck, C. Klein, S. Spicher, G. Hagelueken, S. Grimme, A. Lützen und O. Schiemann
Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case
Chem. Eur. J. 2019
DOI: 10.1002/chem.201900977


Wenn ein Außerirdischer in einem Bastelkatalog zum ersten Mal das Foto einer Schere sähe, wüsste er wohl nicht, wozu wir Erdlinge dieses Ding benutzen. Bekäme er dagegen ein Video gezeigt, in dem sich die Schere öffnet und schließt, könnte er vielleicht mit ein wenig Fantasie auf ihre Funktion folgern.

Ganz ähnlich geht es Wissenschaftlern, wenn sie die Arbeitsweise eines Enzyms nachvollziehen wollen: Sofern sie überhaupt die Struktur des Moleküls kennen, dann meist nur als ein Standbild. Wie sich das Enzym in Aktion verhält, welche Teile sich aufeinander zu und welche voneinander wegbewegen, wissen sie nicht.


 
Das Fe3+-Ion im katalytischen Zentrum verhält sich wie ein Magnet: Ändert er seine Polung, ruft das bei dem ebenfalls magnetischen Marker ein Echo hervor, aus dem sich der Abstand errechnen lässt.

Enzyme katalysieren in den Zellen bestimmte chemische Reaktionen – vergleichbar mit einer Schere, die Papier zerschneidet. Sie verfügen dazu über katalytische Zentren (die Klingen), die mit dem Ausgangsstoff (dem Papier) in Kontakt treten. „Während dieses Vorgangs ändert sich in der Regel die dreidimensionale Form des Enzyms“, erklärt Prof. Dr. Olav Schiemann vom Institut für Physikalische und Theoretische Chemie der Universität Bonn. „Im Normalfall lassen sich diese Konformationsänderungen nicht oder nur mit großem Aufwand sichtbar machen. Das macht es oft schwierig, den Katalyse-Mechanismus nachzuvollziehen.“

Schiemanns Arbeitsgruppe ist es gelungen, eine Methode zu entwickeln, mit der die Bewegungen von Teilen des Proteins gegeneinander im Laufe der Katalyse gemessen werden können. Die Bonner Wissenschaftler arbeiten schon seit einigen Jahren mit großem Erfolg an derartigen Verfahren. In ihrer aktuellen Studie haben sie eine besonders wichtige Gruppe von Enzymen unter die Lupe genommen. Diese tragen in ihren katalytischen Zentren Metallionen mit zahlreichen ungepaarten Elektronen. Ein Beispiel ist das Hämoglobin, das mit Hilfe eines Eisen-Ions Sauerstoff bindet und so mit dem Blut transportieren kann.



Ausgeflippte Ionen

„Unsere gängigen Methoden sind für derartige Hochspin-Ionen ungeeignet“, erklärt Schiemanns Mitarbeiter Dr. Dinar Abdullin. „Wir haben daher ein neues Verfahren entwickelt, die Theorie dazu ausgearbeitet und mit Erfolg getestet.“ Die Forscher nutzten dazu die Tatsache, dass Hochspin-Ionen sich wie kleine Elektromagnete verhalten. Zudem können sie zufällig ihre Polung ändern – sie „flippen“: Der Nordpol wird zum Süd- und der Süd- zum Nordpol.

Dieses Phänomen lässt sich für die Abstandsmessung nutzen. Dazu verknüpfen die Wissenschaftler das Enzym mit bestimmten chemischen Verbindungen, die ebenfalls elektromagnetische Eigenschaften haben. „Wenn die Hochspin-Ionen flippen, reagieren diese kleinen Elektromagnete auf das veränderte Magnetfeld in ihrer Umgebung, indem sie ebenfalls ihre Polung ändern“, erklärt Abdullin. Wann und wie sie das machen, hängt unter anderem von der Entfernung zum Hochspin-Ion ab. Die Distanz zwischen den beiden lässt sich so genau bestimmen.

Wenn man mehrere Magnetgruppen an ein Enzym bindet, erhält man auf diese Weise den Abstand jeder dieser Gruppen zum Hochspin-Ion und damit zum katalytischen Zentrum. „Durch Kombination dieser Werte können wir, wie mit einem molekularen GPS, die räumliche Position dieses Zentrums messen“, erklärt Schiemann. „Wir können so zum Beispiel feststellen, wie sich seine Lage im Verlauf der Katalyse relativ zu den anderen Magnetgruppen ändert.“

Dem Enzym wirklich bei der Arbeit zusehen können die Wissenschaftler aber noch nicht. „Momentan arbeiten wir noch mit tiefgekühlten Zellen“, sagt Schiemann. „Diese enthalten zahlreiche Enzyme, die zu unterschiedlichen Zeitpunkten der katalytischen Reaktion eingefroren wurden. Wir erhalten also keinen Film, sondern eine Reihe von Standbildern“ - etwa so, als würde man die Schere aus dem Eingangsbeispiel zu zahllosen verschiedenen Momenten während des Schnittvorgangs fotografieren.

„Wir arbeiten aber schon an der nächsten Verbesserung“, betont der Chemiker: „Der räumlichen Vermessung von Biomolekülen in Zellen und bei Raumtemperatur.“ Die Forscher erhoffen sich so auch Einblicke in die Entstehung bestimmter Erkrankungen, die durch Funktionsstörungen von Enzymen ausgelöst werden. An der Studie waren neben Dr. Maxim Yulikov von der ETH Zürich von Seiten der Universität Bonn auch die Arbeitsgruppe um Prof. Dr. Stefan Grimme (ebenfalls Institut für Physikalische und Theoretische Chemie) sowie von Prof. Dr. Arne Lützen (Kekulé-Institut) beteiligt.




Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 7 Tage

www.biologie-seite.de 16 Meldungen

Meldung vom 21.05.2019

Neue Studie zeigt: Tropische Korallen spiegeln die Ozeanversauerung wider

Das Kalkskelett tropischer Korallen weist bereits Veränderungen in der chemischen Zusammensetzung auf, die au ...

Meldung vom 21.05.2019

Namenlose Fliegen

Unsere heimischen Fliegen und Mücken zählen mit knapp 10.000 bekannten Arten zu einer der vielfältigsten In ...

Meldung vom 20.05.2019

Bonobo Mütter verhelfen ihren Söhnen zu mehr Nachwuchs

Bei vielen sozialen Tierarten teilen sich Individuen die Aufgaben der Kindererziehung, doch neue Forschungserg ...

Meldung vom 20.05.2019

Auf die Größe kommt es an

Ökologe der Universität Jena und des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv) ent ...

Meldung vom 20.05.2019

3D-Technologie ermöglicht Blick in die Vergangenheit

Studie identifiziert Fischarten anhand vier Millionen Jahre alter Karpfenzähne ‒ Modell zur Evolution der B ...

Meldung vom 20.05.2019

Auswirkungen von Klimaveränderungen auf die genetische Vielfalt einer Art

Über das Genom des Alpenmurmeltiers.

Meldung vom 17.05.2019

Ernst Haeckel: Vordenker hochmoderner Disziplinen

Wissenschaftshistoriker der Universität Jena erklären Ernst Haeckels Ökologie-Definition.

Meldung vom 17.05.2019

Echoortung von Fledermäusen - Exzellente Navigation mit wenig Information

LMU-Forscher widerlegen bisherige Annahmen über die Echoortung: Fledermäuse haben deutlich weniger räumlich ...

Meldung vom 17.05.2019

Neues Petersilien-Virus von Braunschweiger Forschern entdeckt space

Neues Petersilien-Virus kommt im Raum Braunschweig und anderen Teilen Deutschlands vor.

Meldung vom 16.05.2019

Bettgenosse gesucht: Wer war der erste Wirt der Bettwanzen

Ein internationales Team von Wissenschaftlern unter der kooperativen Leitung des TUD Biologen Prof. Klaus Rein ...

Meldung vom 15.05.2019

Schimpansen graben mit Werkzeugen nach Futter

Forschungsteam filmt im Zoo erstmals, wie die Menschenaffen vorgehen, um an vergrabene Leckereien zu kommen.

Meldung vom 15.05.2019

Übersatte Bakterien machen den Menschen krank

SFB 1182-Forschungsteam schlägt in einer neuen Hypothese vor, dass Entzündungskrankheiten durch ein Nahrungs ...

Meldung vom 15.05.2019

Große Fragen zur Rolle mikroskopischen Lebens für unsere Zukunft

Wie Mikroorganismen die dynamische Entwicklung unserer Erde beeinflussen.

Meldung vom 15.05.2019

Wälder tragen weniger zum Klimaschutz bei als vermutet

Eine Studie mit Beteiligung der Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL könnte ein Dämp ...

Meldung vom 15.05.2019

Ausgezirpt - Drastischer Biomasseverlust bei Zikaden in Deutschland

In der April- Ausgabe der vom Bundesamt für Naturschutz herausgegebenen Zeitschrift „Natur und Landschaft ...

Meldung vom 14.05.2019

Relaisstation im Gehirn steuert unsere Bewegungen

Die Relaisstation des Gehirns, die Substantia nigra, beherbergt verschiedene Arten von Nervenzellen und ist f ...


03.05.2019
Eine Frage der Zeit
24.04.2019
Kraftwerk ohne DNA

06.03.2019
Bindung mit Folgen
16.01.2019
Plötzlich gealtert

19.12.2018
Baum der Schrecken
07.11.2018
Plastik im Fisch
28.09.2018
Gestresste Pflanzen

13.08.2018
Wie Vögel lernen

15.06.2018
Primaten in Gefahr
24.05.2018
Störche im Aufwind
11.05.2019
Kenne Deinen Fisch!
11.05.2019
Leben ohne Altern
11.05.2019
Lebensraum Käse
11.05.2019
Domino im Urwald
11.05.2019
Trend-Hobby Imker
11.05.2019
Wie Bienen riechen

Newsletter

Neues aus der Forschung