Phytohormon

Phytohormone (griechische Einzahl φυτοορμόνη, fitoormóni, „Pflanzenhormon“) sind biochemisch wirkende pflanzeneigene (endogene) organische Verbindungen, die als Botenstoffe (sog. Signalmoleküle) Wachstum und Entwicklung der Pflanzen steuern und koordinieren. Da sie nicht alle Kriterien der eigentlichen Hormone erfüllen, können sie auch als Wachstumsregulatoren bezeichnet werden.[1] Neben den echten Phytohormonen gibt es zahlreiche andere sekundäre Pflanzeninhaltsstoffe, die ebenfalls wachstumsregulatorische Wirkung zeigen, zum Beispiel einige phenolische Verbindungen und Steroide. Diese gehören jedoch definitionsgemäß nicht zu den Pflanzenhormonen.

Vorkommen und Nachweis

Phytohormone kommen in allen höheren Pflanzen vor. Pflanzenhormone werden nur in geringen Mengen gebildet. Der Gehalt an den einzelnen Pflanzenhormonen hängt vom jeweiligen Pflanzenorgan und dessen Entwicklungszustand ab. Häufig ist nicht die absolute Konzentration entscheidend, sondern das Mengenverhältnis der Phytohormone zueinander. Nachweis und Bestimmung von Phytohormonen erfolgen durch verschiedenartige empfindliche Biotestverfahren, durch physikalisch-chemische Methoden und immunologische Analysenverfahren. Bedeutende Gehalte an Phytohormonen finden sich nach bisherigem Kenntnisstand z. B. bei Hopfen, Rotklee, Sojabohnen, Kichererbsen und Yamswurzel.

Ethylen, ein gasförmiges Phytohormon, das zum Reifen von Früchten beiträgt.[2]

Wirkungsweise

Die Pflanzenhormone werden in der Pflanze vom Entstehungs- zu einem spezifischen Wirkungsort transportiert, entweder von Zelle zu Zelle (z. B. Auxine), über die Leitungsbahnen (z. B. Cytokinine), oder über den Gasraum zwischen den Zellen (Ethylen).

Sie sind damit sozusagen das Nervensystem der Pflanze, indem sie Informationen zwischen den pflanzlichen Geweben austauschen und auf äußere ökologische Einflüsse eine spezifische Reaktion bewirken. Pflanzenhormone regulieren im engen wechselseitigen Zusammenspiel die pflanzlichen Wachstums- und Entwicklungsprozesse und können diese auslösen, hemmen oder fördern. Sie steuern und koordinieren auf diese Weise das Wachstum von Wurzel, Spross und Blatt, die Entwicklung von Samen und Frucht, die Seneszenz und Abszission, die Apikaldominanz, Ruhepausen von Pflanzen, den Gravitropismus und Phototropismus und viele andere Prozesse.

Entstehungsorte und der auf chemische Wechselwirkung beruhende Mechanismus sind noch wenig erforscht. Angriffsort der Phytohormone sind hormonspezifische Rezeptorproteine. Regulierung der Produktion: Die Pflanzenhormone werden entweder

  • durch verschiedene enzymatisch gesteuerte Abbaureaktionen irreversibel inaktiviert,

oder

  • durch Konjugatbildung mit Monosacchariden oder Aminosäuren in biologisch inaktive Speicherformen überführt. Diese Konjugate haben als reversible (wieder aktivierbare) Deaktivierungsprodukte eine wichtige Funktion im Stoffwechsel der Pflanze.

Während Phytohormone in Gefäßpflanzen ein breites Wirkungsspektrum haben (die sogenannte pleiotrope Wirkung), sind insbesondere für Auxine, Cytokinine und Abscisinsäure sehr spezifische Effekte auf die Differenzierung des Protonemas der Laubmoose beschrieben.[3] Bildungsort und Wirkungsort sind oft nicht eindeutig voneinander getrennt.

Einteilung

Chemisch sind Phytohormone keine einheitliche Stoffklasse. Sie werden unterteilt in fünf Gruppen:

  • die vorwiegend wachstumsfördernden Auxine, Cytokinine und Gibberelline,
  • sowie die hemmenden Phytohormone Abscisinsäure und Ethylen.

Zudem spielen Brassinosteroide, Jasmonate, Salizylate und Systemin, als einziges Peptidhormon, eine Rolle. Polyamine zählen nicht zu den Phytohormonen, da sie nicht ausschließlich Signalfunktion haben, in der Zelle immer vorhanden sind, als direkte Reaktionspartner agieren (gehen verändert aus der Reaktion hervor, irreversibel) und in hohen Konzentrationen (mM) wirksam sind.

Anwendung

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
  • Pflanzenhormone und wirkungsverwandte Wachstumsregulatoren finden in der Land- und Forstwirtschaft sowie im Gartenbau eine breite Anwendung; siehe Gibberellinsäure.
  • Auch in der Medizin werden Pflanzenhormone eingesetzt (v.a. bei Menstruationsbeschwerden, im Klimakterium).
  • Durch Begasung mit Ethylen beschleunigt man das Reifen unreifer Früchte wie Bananen, Orangen und Zitronen in geschlossenen Lagerhallen. Ebenfalls dient es zur Induktion der Blütenbildung in geschlossenen Gewächshäusern. Zur Beschleunigung des Reifeprozesses von Früchten reichen bereits nanomolekulare Ethylen-Konzentrationen. Ebenso kann man durch kontinuierliches Entfernen des Ethylens aus Lagerhallen für Früchte deren Frische erhalten.[4]

Siehe auch

Quellenangaben

  1. v. Sengbusch, Seite der Uni-Hamburg
  2. Joachim Buddrus: Grundlagen der Organischen Chemie, 4. Auflage, de Gruyter Verlag, Berlin, 2011, S. 151−153, ISBN 978-3-11-024894-4.
  3. Eva L. Decker, Wolfgang Frank, Eric Sarnighausen, Ralf Reski (2006): Moss systems biology en route: Phytohormones in Physcomitrella development. Plant Biology 8, 397–406, doi:10.1055/s-2006-923952.
  4. Otto-Albrecht Neumüller (Herausgeber): Römpps Chemie Lexikon, Frank’sche Verlagshandlung, Stuttgart, 1983, 8. Auflage, S. 1203−1205, ISBN 3-440-04513-7.

Literatur

  • Heide Theiß, Bruno Hügel: Experimente zur Entwicklungsbiologie der Pflanzen - Phytohormone; Quelle & Meyer, Wiesbaden 1995, ISBN 3-494-01242-3

Weblinks


Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage (8 Meldungen)

25.01.2022
Zytologie | Genetik | Biochemie
Eine unerwartete Anziehung von Nukleinsäuren und Fett
Wissenschaftler finden heraus, dass Lipide die RNA-Aktivität modulieren – ein möglicher Hinweis auf den Ursprung des Lebens und ein Werkzeug für die synthetische Biologie.
25.01.2022
Ökologie | Bionik, Biotechnologie, Biophysik | Biodiversität
Weltweit Schutzgebiete unter die Lupe genommen
Schutzgebiete gehören zu den effektivsten Mitteln, um die biologische Vielfalt zu erhalten, allerdings werden neue Schutzgebiete oft eingerichtet, ohne bereits bestehende Reservate zu berücksichtigen.
24.01.2022
Anthropologie | Ethologie | Primatologie
Werkzeuggebrauch bei Schimpansen ist kulturell erlernt
Werden Schimpansen Nüsse und Steine vorgesetzt, wissen sie damit von sich aus nicht viel anzufangen.
24.01.2022
Ethologie | Biochemie
Partnersuche bei Spinnen
In einer Studie an der Wespenspinne „Argiope bruennichi“ haben Wissenschaftlerinnen zeigen können, dass die Weibchen ihre Pheromonmenge strategisch an die Paarungssituation anpassen können.
21.01.2022
Ökologie | Neobiota
Invasive Krebstiere verursachen Schäden in 3-stelliger Millionenhöhe
Ein internationales Team hat die wirtschaftlichen Kosten, die invasive aquatische Krebstiere weltweit verursachen, berechnet.
20.01.2022
Mikrobiologie
Fauchen, zischen, spucken: Der Geysir in Andernach und seine Mikroben
Wissenschaftler fanden heraus, welche Einzeller dort leben und wie sie CO2 binden.
20.01.2022
Taxonomie | Meeresbiologie
In Japan entdeckter Ringelwurm nach Godzillas Erzfeind benannt
Verzweigte Meereswürmer sind bizarre Kreaturen mit einem Kopf, aber einem Körper, der sich immer wieder in mehrere hintere Enden verzweigt.
20.01.2022
Physiologie | Bionik, Biotechnologie, Biophysik | Insektenkunde
Neues von den Kleinstinsekten
Seit einigen Jahren gibt es in der Wissenschaft ein verstärktes Interesse, die Fortbewegung von Tieren, die nur wenige Millimeter groß sind, zu verstehen.