Lignocellulose

Beispiel einer möglichen Ligninstruktur

Die Lignocellulose (von lat. lignum = „Holz“ oder „Baum“) bildet die Zellwand verholzter Pflanzen und dient ihnen als Strukturgerüst. Hemicellulosen und vor allem Cellulose bilden zunächst ein Gerüst, in das beim Vorgang der Verholzung (Lignifizierung) nachträglich das Lignin eingelagert wird.

Molekularer Aufbau

Darstellung eines Cellulosemonomers (β-Glucose) in der Haworth-Schreibweise.

Cellulose ist ein langgestrecktes Polymer aus zahlreichen β-1,4-glycosidisch verknüpften Glucose-Monomeren. Eine Vielzahl dieser Polymere wird zu Fasern mit teilweise kristallinen Bereichen zusammengelagert. Diese Fasern sind längs zum Xylem angeordnet und verleihen der Pflanze damit eine hohe Zug- und Biegefestigkeit. Hemicellulose macht einen geringeren Anteil aus und ist weniger geordnet aufgebaut. Grund ist, dass dieses Polymer, bestehend aus verschiedenen Zuckern, auch verzweigende Verknüpfungen aufweist, die keine faserartige Anordnung erlauben. Lignin besteht aus verschiedenen Typen von Phenylpropanen, die in das Cellulose-Hemicellulose-Gerüst eingelagert und zum Polymer Lignin verknüpft werden. Die beiden Substanzen werden dadurch eng verbunden und bilden die Lignocellulose.[1]

Funktion

Häufig wird zur Beschreibung der Funktion von Lignocellulose der Vergleich mit Stahlbeton verwendet. Während die Cellulose, vergleichbar der Stahlbewehrung, für Zug- und Biegefestigkeit sorgt, ist die Matrix aus Lignin, als Analogon zu Beton, für die Druckfestigkeit verantwortlich. Wird beispielsweise ein Baum in einem Sturm stark belastet, so sorgen die Cellulosefasern an der windzugewandten Seite für Zugfestigkeit. Auf der windabgewandten Seite verhindern die Lignineinlagerungen das Kollabieren der nicht massiven Holzstruktur durch Verleihung von Druckfestigkeit. Darüber hinaus ist Lignocellulose durch seine dichte Struktur und Verknüpfung schlecht für Enzyme zugänglich und schützt die verholzte Pflanze so vor Schädlingen wie Pilzen und Bakterien.

Nutzung

Eine Nutzung findet in Form von Holz als Baustoff und Brennstoff statt. Der Celluloseanteil wird zur Papierherstellung verwendet. Lignin ist dabei ein Abfall- und Störstoff, der in der verwendeten Lignocellulose in möglichst geringer Menge vorliegen sollte. In verschiedenen Pilotprojekten wird versucht Lignocellulose aus Getreide, Stroh, Schilfrohr, Holz, Papier und cellulosehaltigen Abfällen, als nachwachsenden Rohstoff für unterschiedliche chemische Grundstoffe zu verwenden. Insbesondere die phenylartigen Verbindungen im Lignin gelten als möglicher Rohstoff für die stoffliche Verwertung.[2][3][4] Die Nutzung von Lignocellulose als Rohstoff für Biokraftstoffe wird mit der Produktion von Lignocellulose-Ethanol angestrebt. Entsprechende Herstellungsverfahren befinden sich derzeit in Entwicklung bzw. der industriellen Erprobung.

Einzelnachweise

  1. Stichwort Lignocellulose. In: Herder-Lexikon der Biologie. Spektrum Akademischer Verlag GmbH, Heidelberg 2003. ISBN 3-8274-0354-5
  2. B. Kamm, M. Kamm: Principles of biorefineries. In: Applied Microbiology and Biotechnology 64/2004, S. 137–145.
  3. A. Uihlein: Die Lignocellulose-Bioraffinerie: Eine erste ökologische Bilanzierung. Forschungszentrum Karlsruhe
  4. J. Puls, J. Schweinle: Verbundvorhaben: Pilotprojekt Lignocellulose-Bioraffinerie, Teilvorhaben 2: Holzaufschluss und Komponententrennung. In: BFH-Nachrichten 2/2007

Literatur

  • H. Yu u. a.: Microbial community succession and lignocellulose degradation during agricultural waste composting. In: Biodegradation 18/2007, S.793–802. PMID 17308882
  • A. Berlin u. a.: Optimization of enzyme complexes for lignocellulose hydrolysis. In: Biotechnology and bioengineering 97/2007, S.287–296. PMID 17058283
  • Nultsch, Wilhelm: Allgemeine Botanik, Georg Thieme Verlag Stuttgart, New York, 1996, 10. Auflage
  • Energie aus Biomasse, von Martin Kaltschmitt, Hans Hartmann (als Google-Book)

Die News der letzten Tage

29.09.2022
Physiologie | Bionik, Biotechnologie, Biophysik
Algen als mikroskopische Bioraffinerien
Fossile Rohstoffe sind begrenzt und nicht überall auf der Welt vorhanden oder dem Abbau zugänglich.
29.09.2022
Mikrobiologie | Physiologie
Neue Bakterienart im Darm entdeckt
Ob Pflanze, Tier oder Mensch, lebende Organismen sind von einer Vielzahl an Bakterien besiedelt.
28.09.2022
Genetik | Paläontologie | Evolution | Säugetierkunde
Genom-Zusammensetzung des frühesten gemeinsamen Vorfahren aller Säugetiere rekonstruiert
Das rekonstruierte Vorfahren-Genom kann zum Verständnis der Evolution der Säugetiere und zum Erhalt der heutigen Wildtiere beitragen.
27.09.2022
Genetik | Immunologie | Land-, Forst- und Viehwirtschaft
Thema Ernährungssicherheit: Struktur von Weizen-Immunprotein entschlüsselt
Ein internationales Forschungsteam hat entschlüsselt, wie Weizen sich vor einem tödlichen Krankheitserreger schützt.
26.09.2022
Ethologie
Neues von den gruppenlebenden Tieren: Hilfsbereitschaft und Familienbande
Die Bereitschaft, Artgenossen zu helfen, unterscheidet sich von Tierart zu Tierart – und auch zwischen Männchen und Weibchen.
26.09.2022
Anthropologie | Paläontologie | Klimawandel
Evolution des Menschen: Klimaschwankungen in Ostafrika ein Motor
Interdisziplinäre Forschung in Südäthiopien zeigt, wie Schlüsselphasen des Klimawandels die menschliche Evolution beinflusste.
26.09.2022
Ökologie | Klimawandel | Meeresbiologie
Schritthalten mit dem Klimawandel?
Die für die Nahrungsnetze der Ozeane wichtigen Copepoden können sich genetisch an wärmere und saurere Meere anpassen.
26.09.2022
Anthropologie | Mikrobiologie | Physiologie
Mehr als nur Bauchgefühl
Die Strömungsgeschwindigkeit in unserem Verdauungssystem bestimmt unmittelbar, wie gut die Nährstoffe vom Darm aufgenommen werden und wie viele Bakterien darin leben.
26.09.2022
Biodiversität | Insektenkunde | Land-, Forst- und Viehwirtschaft
Mehrjährige Blühstreifen in Kombination mit Hecken: das gefällt unseren Wildbienen
Landwirtinnen und Landwirte sollten ein Netzwerk aus mehrjährigen Blühstreifen in Kombination mit Hecken schaffen, um Wildbienen ein kontinuierliches Blütenangebot zu bieten.