Optogenetik: Licht reguliert ein Enzym



Bio-News vom 29.03.2021

Neues Werkzeug für die Zellbiologie: Ein Würzburger Forschungsteam hat einen Lichtsensor mit Enzymfunktion entwickelt. Diese lässt sich mit unterschiedlichen Lichtfarben an- und abschalten.

Die einzellige Grünalge Chlamydomonas reinhardtii hat der Forschung schon einmal einen wuchtigen Impuls gegeben: Einer ihrer Lichtsensoren, das Channelrhodopsin-2, begründete vor rund 20 Jahren den Erfolg der Optogenetik.

Bei dieser Technologie wird der Lichtsensor der Alge in Zellen oder kleine Lebewesen wie Fadenwürmer eingebaut. Danach lassen sich bestimmte physiologische Prozesse durch Licht anstoßen oder beenden. Das hat schon etliche neue wissenschaftliche Erkenntnisse gebracht, zum Beispiel zur Funktion von Nervenzellen.


Violettes Licht stößt im Lichtsensor-Protein switch-Cyclop eine Signalkette an, blaues oder grünes Licht stoppt die Kette. Am Ende wird die Produktion des Signalmoleküls cGMP über das Enzym Guanylyl-Cyclase (GC) reguliert.

Publikation:


Tian, Y., Nagel, G. & Gao, S.
An engineered membrane-bound guanylyl cyclase with light-switchable activity
BMC Biol 19, 54 (2021)

DOI: 10.1186/s12915-021-00978-6



Jetzt setzt die Grünalge Chlamydomonas wieder einen Akzent. Erneut sind es ihre Lichtsensoren, die Rhodopsine, die den Werkzeugkasten der Zellbiologie um ein Instrument erweitern.

Lichtsensor produziert den Botenstoff cGMP

Aus zwei Rhodopsinen der Alge haben die Forscher Yuehui Tian, Georg Nagel und Shiqiang Gao von der Julius-Maximilians-Universität (JMU) Würzburg einen neuartigen Lichtsensor konstruiert. Er besitzt enzymatische Aktivität und kann durch zwei unterschiedliche Lichtfarben geschaltet werden. UV-Licht oder violettes Licht führt zur Produktion von cGMP, einem wichtigen Signalmolekül in der Zelle. Ein blauer oder grüner Lichtblitz dagegen stoppt die Produktion des Signalmoleküls.

Weitere Rhodopsine der Algen im Blick

Nagels Arbeitsgruppe forscht im Physiologischen Institut der JMU weiterhin daran, die Eigenschaften der verschiedenen Rhodopsine aus Chlamydomonas zu charakterisieren. Das Team des Professors kooperiert dabei eng mit Neurowissenschaftlerinnen und Neurowissenschaftlern. Ziel ist es, die Anwendungsmöglichkeiten der Lichtsensoren auszuloten.



Diese Newsmeldung wurde mit Material der Julius-Maximilians-Universität Würzburg via Informationsdienst Wissenschaft erstellt

Die News der letzten 7 Tage 4 Meldungen






warte

warte

warte

warte

warte

warte

warte

warte

warte

warte