Die künstliche Plazenta im Labor

Neues aus der Forschung

Meldung vom 13.08.2018

Um wichtige Bio-Membranen besser zu verstehen, muss man zu neuen Methoden greifen: An der TU Wien stellte man mit 3D-Druck-Verfahren eine künstliche Plazentabarriere auf einem Chip her.


180813-1914_medium.jpg
 
Der Bio-Chip: Hier kann die künstliche Plazenta unter kontrollierten Bedingungen untersucht werden.
Denise Mandt et al.
Fabrication of placental barrier structures within a microfluidic device utilizing two-photon polymerization
International Journal of Bioprinting, 4,2 (2018)
DOI: 10.18063/ijb.v4i2.144


Die Plazenta hat eine wichtige und hochkomplizierte Aufgabe: Sie muss dafür sorgen, dass zwischen der Mutter und ihrem ungeborenen Kind wichtige Substanzen ausgetauscht werden und gleichzeitig anderen Substanzen der Durchgang versperrt wird. Längst hat man noch nicht vollständig verstanden, wovon die Durchlässigkeit der Plazenta abhängt – schließlich ist es kaum möglich, ihre Funktion am Menschen direkt zu untersuchen.

An der TU Wien stellte man daher nun ein künstliches Plazenta-Modell her, das dem natürlichen Vorbild sehr nahekommt: Mit speziell entwickelten lasergesteuerte 3D-Druck-Verfahren kann man aus Hydrogelen hochpräzise Formen herstellen, die dann mit Plazenta-Zellen besiedelt werden. Damit wird es nun möglich, wichtige Forschungsfragen zu klären, etwa über den Glucose-Austausch zwischen Mutter und Kind.


 
Denise Mandt im Labor

Komplexer Stoffaustausch zwischen Mutter und Kind

„Der Transport von Substanzen durch biologische Membranen spielt in verschiedenen Bereichen der Medizin eine wichtige Rolle“, sagt Prof. Aleksandr Ovsianikov vom Institut für Werkstoffwissenschaften und Werkstofftechnologie der TU Wien. „Etwa in der Blut-Hirn-Schranke, bei der Nahrungsaufnahme in Magen und Darm oder eben in der Plazenta.“

So gibt es etwa zahlreiche Studien darüber, dass sich Krankheiten der Mutter wie etwa Diabetes auf das ungeborene Kind auswirken können. Auch Bluthochdruck kann den Stofftransport zum Fötus beeinflussen. Auf welche Weise in solchen Fällen aber die vielen beteiligten Parameter zusammenspielen, konnte bisher kaum untersucht werden.

Spezialchip mit Bio-Trennwand aus dem 3D-Drucker

An der TU Wien arbeitet man daher daran, Organstrukturen auf kompakten Chips nachzubilden, um so wichtige Aspekte ihrer Funktion unter kontrollierten Bedingungen untersuchen zu können. „Unser Chip besteht aus zwei Bereichen – eine repräsentiert den Fötus, der andere die Mutter“, erklärt Denise Mandt, die im Rahmen ihrer Diplomarbeit an dem Projekt arbeitete. „Dazwischen stellen wir in einem speziellen 3D-Druck-Verfahren eine Trennwand her – die künstliche Plazentamembran.“

An solchen hochauflösenden 3D-Druck-Verfahren arbeitet man an der TU Wien seit Jahren mit großem Erfolg: Man verwendet Materialien, die mit Hilfe von Laserstrahlen zum Aushärten gebracht werden können. So kann man Punkt für Punkt mit einer Auflösung im Mikrometer-Bereich die gewünschten 3D-Strukturen herstellen. „In unserem Fall handelt es sich dabei um ein Hydrogel mit guter Bioverträglichkeit“, erklärt Aleksandr Ovsianikov. „Nach dem Vorbild der natürlichen Plazenta stellen wir eine Oberfläche mit kleinen, gewundenen Zotten her. Dort können sich dann Plazentazellen ansiedeln und eine Oberfläche erzeugen, die der natürlichen Plazenta sehr ähnlich ist.“



Das Organ auf dem Chip

„Die Organ-on-a-Chip Technologie ist ein revolutionärer Ansatz in der Biomedizin, der in den letzten Jahren großes Interesse in der klinischen Diagnostik, Biotechnologie und Pharmazie erzeugt hat“, sagt Prof. Peter Ertl, Leiter der Cell-Chip-Forschungsgruppe, die maßgeblich an dem Projekt beteiligt war. „Die Erzeugung von humanen Miniorganen am Chip soll dazu führen, dass patientenspezifische Therapieansätze entwickelt werden können, und stellt außerdem auch eine wichtige Methode für den Ersatz von Tierversuchen dar.“

Am Chip können wichtige biologische Parameter wie Druck, Temperatur, Geometrie und Nährstoffversorgung der Miniorgane sowie die Zugabe von Medikamenten genau kontrolliert werden. So wird es möglich, Krankheitsverläufe und Heilungsraten genau zu beobachten.

In ersten Tests konnte bereits gezeigt werden, dass sich die künstliche Plazenta am Chip tatsächlich ähnlich wie eine natürliche Plazenta verhält: Kleine Moleküle werden durchgelassen, große werden aufgehalten. Nun soll das Modell verwendet werden, um gezielt wichtige Aspekte des Nährstofftransports von der Mutter zum Fötus zu untersuchen.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 7 Tage

www.biologie-seite.de 14 Meldungen

Meldung vom 17.05.2019

Echoortung von Fledermäusen - Exzellente Navigation mit wenig Information

LMU-Forscher widerlegen bisherige Annahmen über die Echoortung: Fledermäuse haben deutlich weniger räumlich ...

Meldung vom 17.05.2019

Neues Petersilien-Virus von Braunschweiger Forschern entdeckt space

Neues Petersilien-Virus kommt im Raum Braunschweig und anderen Teilen Deutschlands vor.

Meldung vom 16.05.2019

Bettgenosse gesucht: Wer war der erste Wirt der Bettwanzen

Ein internationales Team von Wissenschaftlern unter der kooperativen Leitung des TUD Biologen Prof. Klaus Rein ...

Meldung vom 15.05.2019

Schimpansen graben mit Werkzeugen nach Futter

Forschungsteam filmt im Zoo erstmals, wie die Menschenaffen vorgehen, um an vergrabene Leckereien zu kommen.

Meldung vom 15.05.2019

Übersatte Bakterien machen den Menschen krank

SFB 1182-Forschungsteam schlägt in einer neuen Hypothese vor, dass Entzündungskrankheiten durch ein Nahrungs ...

Meldung vom 15.05.2019

Große Fragen zur Rolle mikroskopischen Lebens für unsere Zukunft

Wie Mikroorganismen die dynamische Entwicklung unserer Erde beeinflussen.

Meldung vom 15.05.2019

Wälder tragen weniger zum Klimaschutz bei als vermutet

Eine Studie mit Beteiligung der Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL könnte ein Dämp ...

Meldung vom 15.05.2019

Ausgezirpt - Drastischer Biomasseverlust bei Zikaden in Deutschland

In der April- Ausgabe der vom Bundesamt für Naturschutz herausgegebenen Zeitschrift „Natur und Landschaft ...

Meldung vom 14.05.2019

Relaisstation im Gehirn steuert unsere Bewegungen

Die Relaisstation des Gehirns, die Substantia nigra, beherbergt verschiedene Arten von Nervenzellen und ist f ...

Meldung vom 14.05.2019

Archaeopteryx bekommt Gesellschaft

Forscher der Bayerischen Staatssammlung für Paläontologie und Geologie (SNSB-BSPG) sowie der LMU München be ...

Meldung vom 14.05.2019

Geschlechtsreife Aale bauen ihre Knochen ab

Um zu ihren Fortpflanzungsgebieten zu gelangen, schwimmen Europäische Aale mehrere Tausend Kilometer auf die ...

Meldung vom 13.05.2019

Universität Stuttgart benennt neue Bärtierchen-Art: Milnesium inceptum entdeckt

Eine neue Bärtierchen-Art wurde von Dr. Ralph Schill vom Institut für Biomaterialien und biomolekulare Syste ...

Meldung vom 13.05.2019

Anglerinnen und Angler sorgen für Fischartenvielfalt im Baggersee

Forschende des Leibniz-Instituts für Gewässerökologie und Binnenfischerei (IGB) haben zusammen mit Fischere ...

Meldung vom 09.05.2019

Wie Stammzellen ein Gehirn korrekter Größe und Zusammensetzung bauen

Im Laufe der Gehirnentwicklung erzeugen Stammzellen unterschiedliche Typen von Neuronen zu unterschiedlichen Z ...


03.05.2019
Eine Frage der Zeit
24.04.2019
Kraftwerk ohne DNA

06.03.2019
Bindung mit Folgen
16.01.2019
Plötzlich gealtert

19.12.2018
Baum der Schrecken
07.11.2018
Plastik im Fisch
28.09.2018
Gestresste Pflanzen

13.08.2018
Wie Vögel lernen

15.06.2018
Primaten in Gefahr
24.05.2018
Störche im Aufwind
13.08.2018
Kenne Deinen Fisch!
13.08.2018
Leben ohne Altern
13.08.2018
Lebensraum Käse
13.08.2018
Domino im Urwald
13.08.2018
Trend-Hobby Imker
13.08.2018
Wie Bienen riechen

Newsletter

Neues aus der Forschung