Oxidative Phosphorylierung

Übergeordnet
Energiestoffwechsel
Phosphorylierung
Untergeordnet
Atmungskette
Chemiosmosis
Gene Ontology
QuickGO

Die oxidative Phosphorylierung ist ein biologischer Prozess, der in allen aeroben Lebewesen stattfindet. Sie ist Teil des Energiestoffwechsels und dient der Energiegewinnung in Form von ATP. Die zur Herstellung von ATP benötigte Energie wird dabei mittels der Atmungskette gewonnen und mithilfe der chemiosmotischen Kopplung in chemische Energie umgesetzt. Beteiligt sind außerdem noch Transportproteine.

Beteiligte Enzyme

Atmungskette

Komplex V

FoF1-ATP-Synthase. Der Komplex V, der schließlich ATP synthetisiert, besteht aus zwei Teilen: Der F1-Teil ragt in die Matrix des Mitochondriums hinein, während der Fo-Teil einen Protonen-Kanal durch die innere Mitochondrienmembran bildet. Mit Hilfe der vorangeschalteten vier Komplexe der Atmungskette wurde ein elektrochemischer Protonengradient aufgebaut. Nach den Gesetzen der Thermodynamik besteht somit eine Triebkraft der Protonen im Intermembranraum zur Matrix des Mitochondriums hin. Den passenden Kanal stellt die Fo-Untereinheit dar. Vergleichbar mit einer Turbine – und tatsächlich konnte eine Rotation des Fo-Teils nachgewiesen werden – wird durch den Protonenfluss Energie erzeugt, die zur Synthese von ATP durch die F1-Untereinheit verwendet wird. (siehe Mechanismus der ATP-Synthase)

Strittig ist noch die Frage, wie viele Protonen für die Synthese eines ATP Moleküls aus ADP und anorganischem Phosphat benötigt werden. Nach Löffler, Petrides [1]: mindestens drei, wobei bei der Bilanzierung ein weiteres Proton (also insgesamt mindestens vier) auftaucht, das für den Transport von Phosphat (durch Phosphat/H+-Symport) in den Matrixraum benötigt wurde.

Je nachdem, aus wie vielen c-Untereinheiten der Transmembranring (Fo c-Ring) besteht, müssen unterschiedlich viele Protonen durch Fo in die Matrix transportiert werden. Es können 10-14 Untereinheiten sein. F1 bildet pro 120° Drehung der Gamma-Einheit 1 Molekül ATP - also bei einer ganzen Umdrehung (360°) 3 Moleküle ATP. Die Anzahl der benötigten Protonen für die Bildung eines ATP-Moleküls beträgt n=4 Protonen für die ATP-Synthase aus E. coli bzw. Chloroplasten.[2]

Transportproteine

ATP/ADP-Translokase

ATP-ADP-Translokase und Phosphattransporter.

Das durch Komplex V erzeugte ATP kann die innere Mitochondriummembran nicht frei passieren. Umgekehrt kann das für die ATP-Synthase benötigte ADP nicht aus dem Cytosol in die Matrix diffundieren. Jedoch existiert ein spezielles Transportsystem, um ATP in das Cytosol und ADP in die Matrix zu bringen, die so genannte ATP/ADP-Translokase (siehe dort).

Die Translokase ist ein häufiges Protein der inneren Membran des Mitochondriums und kann bis zu 14 % aller Proteine der inneren Membran ausmachen.[3] Infolgedessen ist es unwahrscheinlich, dass die ATP-Synthese aus Mangel an ADP limitiert ist.

Phosphattransporter

Für die Synthese von ATP aus ADP wird auch Phosphat benötigt. Dieses kann ebenso wenig durch die innere Membran des Mitochondriums diffundieren wie ATP bzw. ADP. Der Transport wird durch einen speziellen Symporter, den mitochondriellen Phosphat-Transporter ermöglicht, der gleichzeitig ein Proton und ein Phosphatmolekül aus dem Intermembranraum in die Matrix transportiert. Dessen Aktivität kann durch Mersalyl inhibiert werden.

Einzelnachweise

  1. Georg Löffler, Petro E. Pertides: Biochemie und Pathobiochemie. Springer-Verlag, Berlin; 8. Auflage 2007; ISBN 978-3-540-32680-9; Wikibooks
  2. Stefan Steigmiller, Paola Turina, Peter Gräber: The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. In: Proceedings of the National Academy of Sciences. 105. Jahrgang, Nr. 10, 2008, S. 3745–3750 (pnas.org).
  3. Thomas M. Devlin (Hrsg.): Textbook of Biochemistry with Clinical Correlations. Wiley & Sons; 6. Auflage 2005; ISBN 0-471-67808-2; S.570

Die News der letzten Tage

27.01.2023
Land-, Forst-, Fisch- und Viehwirtschaft | Neobiota | Ökologie
Auswirkungen von fremden Baumarten auf die biologische Vielfalt
Nicht-einheimische Waldbaumarten können die heimische Artenvielfalt verringern, wenn sie in einheitlichen Beständen angepflanzt sind.
27.01.2023
Biochemie | Botanik | Physiologie
Wie stellen Pflanzen scharfe Substanzen her?
Wissenschaftler*innen haben das entscheidende Enzym gefunden, das den Früchten der Pfefferpflanze (lat Piper nigrum) zu ihrer charakteristischen Schärfe verhilft.
26.01.2023
Biochemie | Mikrobiologie | Physiologie
Ein Bakterium wird durchleuchtet
Den Stoffwechsel eines weit verbreiteten Umweltbakteriums hat ein Forschungsteam nun im Detail aufgeklärt.
26.01.2023
Bionik, Biotechnologie und Biophysik | Botanik | Physiologie
Schutzstrategien von Pflanzen gegen Frost
Fallen die Temperaturen unter null Grad, bilden sich Eiskristalle auf den Blättern von winterharten Grünpflanzen - Trotzdem überstehen sie Frostphasen in der Regel unbeschadet.
26.01.2023
Entwicklungsbiologie | Genetik
Neues vom Kleinen Blasenmützenmoos
Mithilfe mikroskopischer und genetischer Methoden finden Forschende der Universität Freiburg heraus, dass die Fruchtbarkeit des Laubmooses Physcomitrella durch den Auxin-Transporter PINC beeinflusst wird.
26.01.2023
Klimawandel | Mikrobiologie | Mykologie
Die Art, wie Mikroorganismen sterben beeinflusst den Kohlenstoffgehalt im Boden
Wie Mikroorganismen im Boden sterben, hat Auswirkungen auf die Menge an Kohlenstoff, den sie hinterlassen, wie Forschende herausgefunden haben.
25.01.2023
Entwicklungsbiologie | Evolution
Wie die Evolution auf unterschiedliche Lebenszyklen setzt
Einem internationalen Forscherteam ist es gelungen, eines der Rätsel der Evolution zu lösen.
24.01.2023
Biochemie | Ökologie | Physiologie
Moose verzweigen sich anders... auch auf molekularer Ebene
Nicht-vaskuläre Moose leben in Kolonien, die den Boden bedecken und winzigen Wäldern ähneln.
24.01.2023
Bionik, Biotechnologie und Biophysik | Genetik
Verfahren der Genom-Editierung optimiert
Im Zuge der Optimierung von Schlüsselverfahren der Genom-Editierung ist es Forscherinnen und Forschern in Heidelberg gelungen, die Effizienz von molekulargenetischen Methoden wie CRISPR/Cas9 zu steigern und ihre Anwendungsgebiete zu erweitern.
24.01.2023
Ökologie | Zoologie
Kooperation der männlichen australischen Spinnenart Australomisidia ergandros
Forschende konnten in einer Studie zeigen, dass Männchen der australischen Spinne Australomisidia ergandros ihre erjagte Beute eher mit den anderen Mitgliedern der Verwandtschaftsgruppe teilen als die Weibchen.
24.01.2023
Bionik, Biotechnologie und Biophysik | Physiologie
Mutante der Venusfliegenfalle mit Zahlenschwäche
Die neu entdeckte Dyscalculia-Mutante der Venusfliegenfalle hat ihre Fähigkeit verloren, elektrische Impulse zu zählen.
23.01.2023
Biochemie | Physiologie
neue Einblicke in Mechanismen der Geschmackswahrnehmung
Die Komposition der Lebensmittel, aber auch die Speisenabfolge ist für das perfekte Geschmackserlebnis eines Menüs entscheidend.
19.01.2023
Biodiversität | Neobiota | Ökologie
Starke Zunahme von gebietsfremden Landschnecken
Invasive Landschneckenarten können heimische Arten verdrängen und der menschlichen Gesundheit schaden.
18.01.2023
Insektenkunde | Physiologie | Toxikologie
Was Pflanzengifte bei Monarchfaltern bewirken
Monarchfalter, die zur Abwehr von Fressfeinden große Mengen an Pflanzentoxinen einlagern, tun dies auf Kosten oxidativer Schäden, die die Auffälligkeit ihrer orangefarbenen Flügel beeinflussen.