Kernpore

Kernpore

Kernpore

Schemazeichnung
Masse/Länge Primärstruktur 120 Megadalton
Transporter-Klassifikation
TCDB 9.A.14
Bezeichnung NPC family
Vorkommen
Übergeordnetes Taxon Eukaryoten
Übergeordnet
Zellkern
Gene Ontology
QuickGO

Kernporen (Abk. NPC, von engl. nuclear pore complex) sind Proteinkomplexe in der Kernhülle der Zellkerne von eukaryotischen Zellen. Die Kernhülle besteht aus einer Doppelmembran. Kernporen gehen durch beide Membranen hindurch, sie fungieren somit als „Tore“ und erlauben den Transport von bestimmten Molekülen in und aus dem Zellkern.

In der Kernhülle einer Wirbeltierzelle gibt es etwa 2.000 Poren.

Struktur

Der Rand der Pore besteht außen wie innen aus je acht Proteinkomplexen. Speichenartige Fortsätze ragen zum Mittelpunkt der Pore, wo ein Zentralgranulum sitzt, das ebenfalls einen Ribonukleoproteinkomplex darstellt.

Die Pore enthält einen Kanal, der aus einem 3D-Netzwerkgeflecht aus FG-Wiederholungen aufgebaut ist (F = Phenylalanin; G = Glycin), durch die Wasser ungehindert diffundieren kann.

Schema Seitenansicht NPC mit Gesamt-Zellkern. 1:Doppelmembran 2:Äußerer Ring 3:Speichen 4:FG-Geflecht 5:Filamente
Schema des Transports durch den NPC. Links Import, rechts Export
Immunfärbung von Kernporen (rot), der Lamina (Lamin-Färbung grün) und des Chromatins (blau), oben aufgenommen mit einem Konfokalmikroskop, unten mit einem 3D-SIM-Mikroskop. Im 3D-SIM-Mikroskop lässt sich erkennen, dass unter den Kernporen jeweils ein chromatinfreier Raum ist. Der Maßstabsbalken entspricht 1 µm.

Funktion

Kernporen katalysieren den passiven oder aktiven Transport von Proteinen, RNA, Ribonukleotid-Protein-Komplexen und kleinen Molekülen durch die Kernmembran.

Passiver Transport

Kleine Moleküle bis ca. 5.000 Da (Dalton) können frei durch die Kernpore diffundieren. Moleküle von etwa 17.000 Da benötigen bereits 2 min für die Passage. Größere Teilchen mit einem Durchmesser von bis zu zwei nm oder 40.000 Da können die Kernporen nicht selbständig passieren.

Transport von mRNA aus dem Zellkern

Bei einer erhöhten Transkriptionsrate, z. B. bei Zellen, die viele Proteine produzieren, ist auch die Zahl der Kernporen erhöht, da die Transkription zwar im Zellkern, die Translation jedoch außerhalb des Zellkerns erfolgt und jedes fertige mRNA-Molekül daher den Zellkern verlassen muss.

Zunächst bindet das Protein nukleärer RNA-Exportfaktor 1 an den RNA-exon junction complex (EJC). Dieses Aggregat bindet nun andererseits an den Export-Rezeptor des NPC. Alles zusammen wird als export competent complex bezeichnet. Die Bewegung dieses Komplexes durch die Pore erfordert Energie, die in Form von GTP bereitgestellt wird. Am anderen Ende dissoziieren die genannten Komplexe wieder in ihre Teilkomplexe.[1]

Import von Proteinen

Der umgekehrte Transport von Proteinen in den Zellkern erfolgt nur, wenn das Protein eine Kernlokalisationssequenz besitzt. Das ist eine aus wenigen Aminosäuren bestehende Peptidsequenz. Benötigt werden außerdem bestimmte Transportmoleküle (Importine), die den Transport einleiten.

Einzelnachweise

Weblinks

News mit dem Thema Kernpore

Die News der letzten Tage

22.03.2023
Physiologie
Startschuß zur optischen Wahrnehmung
Forschende haben den molekularen Vorgang entschlüsselt, der als Allererstes im Auge abläuft, wenn Licht auf die Netzhaut trifft.
22.03.2023
Neurobiologie
Wettbewerb zwischen den Gehirnhälften im Schlaf
Der Mensch ist beidseitig symmetrisch: unser Gehirn besteht aus zwei Hälften, den so genannten Hemisphären.
22.03.2023
Neurobiologie | Physiologie
Warum wir von Schokoriegeln und Co. nicht die Finger lassen können
Schokoriegel, Chips und Pommes - warum können wir sie im Supermarkt nicht einfach links liegen lassen?
22.03.2023
Biochemie | Genetik | Zytologie
Aus Perspektive eines Ingenieurs ist Biologie chaotisch und unvollkommen
Der Vorteil von Redundanz in biologischen Systemen.
21.03.2023
Paläontologie
Neue Augen bei Trilobiten entdeckt
Wissenschaftler*innen der Universitäten Köln und Edinburgh entdecken bisher übersehene Augen bei Trilobiten.
21.03.2023
Bionik, Biotechnologie und Biophysik | Bioinformatik
Molekularbiologie trifft auf Quantenphysik
Biologische Systeme sind hochkomplex: Sie werden vor allem über genregulatorische Netzwerke gesteuert, in denen Gene, Proteine und RNA auf vielfältige Art interagieren.
21.03.2023
Astrobiologie | Bionik, Biotechnologie und Biophysik
Leben auf fernen Monden
Flüssiges Wasser gehört zu den wichtigsten Bedingungen für die Entstehung von Leben, wie wir es auf der Erde kennen.
21.03.2023
Biodiversität | Ökologie
Die Fichte stirbt und andere Bäume leiden
Ergebnisse der Waldzustandserhebung 2022 zeigen: Kronenverlichtungen für alle Baumarten weiterhin hoch.
21.03.2023
Genetik | Klimawandel | Physiologie | Zytologie
Modell Arabidopsis thaliana: Ein neuer Signalweg bei niedrigem Sauerstoffgehalt
Der Klimawandel führt zu einem vermehrten Auftreten von Wetterextremen: Im Fokus stehen bisher vor allem lange Dürre- und Hitzeperioden.
21.03.2023
Biodiversität | Taxonomie
Neue Arten der Riesenkrabbenspinnen beschrieben
Ein Forschungsteam aus Deutschland und aus China hat 99 neue Arten aus der Familie der Riesenkrabbenspinnen in Süd-, Ost- und Südostasien beschrieben.
20.03.2023
Biodiversität | Neobiota
Weitverbreitete Arten auf dem Vormarsch
Das menschliche Verhalten treibt den Wandel der Biodiversität und Veränderungen in der Zusammensetzung der Arten rapide voran.