α-Ketoglutarat-Dehydrogenase-Komplex

Der α-Ketoglutarat-Dehydrogenase-Komplex (OGDC) ist ein Proteinkomplex in Eukaryoten und manchen Bakterien, der die oxidative Decarboxylierung von α-Ketoglutarat und die nachfolgende Umsetzung mit Coenzym A zum Succinyl-CoA katalysiert. Diese Reaktion ist Teil des Citratzyklus. Die Gesamtreaktion lautet:

Ketoglutarat + CoA-SH + NAD+ $ \longrightarrow $ Succinyl-CoA + CO2 + NADH
Übergeordnet
Mitochondrium
Gene Ontology
QuickGO

Aufbau

Vergleich OGDC und PDC
Untereinheiten OGDC Untereinheiten PDC
α-Ketoglutarat-Dehydrogenase (E1) Pyruvatdehydrogenase (E1)
Dihydrolipoamid-Succinyltransferase (E2) Dihydrolipoyl-Transacetylase (E2)
Dihydrolipoamid-Dehydrogenase (E3) Dihydrolipoyl-Dehydrogenase (E3)

Am α-Ketoglutarat-Dehydrogenase-Komplex sind drei Enzyme beteiligt: die α-Ketoglutarat-Dehydrogenase E1-Untereinheit (A, EC 1.2.4.2), die Dihydrolipoamid-Succinyltransferase [1] (B, EC 2.3.1.61) und die Dihydrolipoamid-Dehydrogenase (CE, EC 1.8.1.4). Damit hat der Komplex hat einen ähnlichen Aufbau wie der Pyruvatdehydrogenase-Komplex (PDC).[2]

Die α-Ketoglutarat-Dehydrogenase bildet zusammen mit der Pyruvat-Dehydrogenase und der branched-chain-α-Ketosäure-Dehydrogenase eine Familie von Multienzymkomplexen sogenannter α-Ketosäure-Dehydrogenasen.[3]

Im aktiven Multienzymkomplex ist die Succinyltransferase zu hochsymmetrischen Multimeren aggregiert (Tetracosamer der Punktgruppe 432, Hexacontamer der Punktgruppe 532), an welche die verschiedenen Dehydrogenasen gebunden sind.

In Eukaryoten wurde eine einzige Variante des Komplexes in Mitochondrien identifiziert.

Reaktion

Reaktionsmechanismus, für α-Ketoglutarat ist R=CH2–COO

OGDC und PDC nutzen die gleichen Coenzyme und katalysieren auch eine analoge Reaktion, auch der Reaktionsmechanismus ist bei beiden Komplexen sehr ähnlich.[2] α-Ketoglutarat wird oxidativ zu Succinyl-CoA decarboxyliert, dabei entsteht NADH. Im Citratzyklus wird dieses in die Atmungskette eingespeist und dient zur Energieerzeugung.

Bildung von Succinat in Prokaryoten

Veränderte Citratzyklus-Stoffwechselwege, in denen ein Teilschritt fehlt, sind bei Bakterien der Normalfall (13 von 17 untersuchte). Der fehlende Schritt kann durch andere Reaktionsschritte ersetzt sein oder auch nicht. Tatsächlich sind nur von drei Bakterienarten Enzyme mit Ketoglutarat-Dehydrogenase-Aktivität (KDH) bekannt: Euglena gracilis, Bacillus japonicum und Escherichia coli.- Das Bakterium Escherichia coli fährt unter aeroben Bedingungen den kompletten Citratzyklus wie beschrieben. Unter anaeroben Bedingungen ist es in der Lage, die KDH zu deaktivieren. Die Stoffwechselwege, die vorher einen Kreis bildeten, sind nun baumstrukturartig verbunden. M. tuberculosis hingegen kann zwischen zwei verschiedenen Citratzyklen umschalten, die beide vom eukaryotischen Weg verschieden sind.[4]

Archaeen, aber auch manche Bakterien, wie Helicobacter pylori, das unter microaerophilen Bedingungen wächst, katalysieren die Umwandlung von α-Ketoglutarat zu Succinyl-CoA mittels einer oxidationsempfindlichen 2-Oxoglutarat:Ferredoxin-Oxidoreduktase (OGOR, EC 1.2.7.3). Im Gegensatz zur OGDC enthält diese Eisen-Schwefel-Cluster; es fehlen das Flavin und das Liponsäureamid. Anstatt NADH wird Ferredoxin als Reduktionsäquivalent genutzt. Auch Mycobacterium tuberculosis enthält ein CoA-abhängiges Enzym, das dagegen auch unter aeroben Bedingungen stabil ist.[5][6][7]

Bei verschiedenen Mycobakterien (darunter auch Mycobacterium tuberculosis) ist die E1-Untereinheit der Ketoglutarat-Dehydrogenase durch eine Ketoglutarat-Decarboxylase ersetzt, die unabhängig von Coenzym A zunächst Succinat-Semialdehyd produziert, welches von einer NADP+-abhängigen Succinat-Semialdehyd-Dehydrogenase zu Succinat dehydriert wird.[8]

Literatur

  • Bunik VI, Fernie AR: Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. In: Biochem. J.. 422, Nr. 3, September 2009, S. 405–21. doi:10.1042/BJ20090722. PMID 19698086.
  • Kabysheva MS, Storozhevykh TP, Pinelis VG, Bunik VI: Synthetic regulators of the 2-oxoglutarate oxidative decarboxylation alleviate the glutamate excitotoxicity in cerebellar granule neurons. In: Biochem. Pharmacol.. 77, Nr. 9, Mai 2009, S. 1531–40. doi:10.1016/j.bcp.2009.02.001. PMID 19426691.
  • Bunik VI, Raddatz G, Wanders RJ, Reiser G: Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid. In: FEBS Lett. 580, Nr. 14, Juni 2006, S. 3551–7. doi:10.1016/j.febslet.2006.05.040. PMID 16737698.

Einzelnachweise

  1. J. E. Knapp, D. Caroll, J. E. Lawson, S. R. Ernst, L. J. Reed, M. L.Hackert: Experssion, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydroliponamide succinyltransferase. In: Protein Sci. 9, S. 37–48, 2000
  2. 2,0 2,1 H. Robert Horton, Laurence A. Moran, K. Gray Scrimgeour, Marc D. Perry, J. David Rawn und Carsten Biele (Übersetzer): Biochemie. Pearson Studium; 4. aktualisierte Auflage 2008; ISBN 978-3-8273-7312-0; S. 536
  3. R. N. Perham: Swinging Arms and Swinging Domains in Multifunctional Enzymes: Catalytic Machines for Multistep Reaktions. In: Annu. Rev. Biochem. 69, S. 961–1004, 2000
  4. Cordwell SJ: Microbial genomes and "missing" enzymes: redefining biochemical pathways. In: Arch. Microbiol.. 172, Nr. 5, November 1999, S. 269–79. PMID 10550468.
  5. Mai, X. und Adams, MW. (1996): Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. In: J Bacteriol. 178(20); 5890-5896; PMID 8830683; PDF (freier Volltextzugriff, engl.)
  6. Pitson SM, Mendz GL, Srinivasan S, Hazell SL: The tricarboxylic acid cycle of Helicobacter pylori. In: Eur J Biochem. 260, Nr. 1, Februar 1999, S. 258–67. PMID 10091606.
  7. Baughn AD, Garforth SJ, Vilchèze C, Jacobs WR: An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis. In: PLoS Pathog.. 5, Nr. 11, November 2009, S. e1000662. doi:10.1371/journal.ppat.1000662. PMID 19936047. Volltext bei PMC: 2773412.
  8. Tian J, Bryk R, Itoh M, Suematsu M, Nathan C: Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. In: Proc. Natl. Acad. Sci. USA. 102, Nr. 30, Juli 2005, S. 10670–5. doi:10.1073/pnas.0501605102. PMID 16027371. Volltext bei PMC: 1180764.

Weblinks

Wikibooks Wikibooks: α-Ketoglutarat-Dehydrogenase – Lern- und Lehrmaterialien

Die News der letzten Tage

22.06.2022
Bionik, Biotechnologie, Biophysik | Insektenkunde
Forschung mit Biss
Wie stark können Insekten zubeißen?
21.06.2022
Klimawandel | Meeresbiologie
Algenmatten im Mittelmeer als Zufluchtsort für viele Tiere
Marine Ökosysteme verändern sich durch den Klimawandel, auch im Mittelmeer.
21.06.2022
Taxonomie | Meeresbiologie
Korallengärten auf der „Mauretanischen Mauer“ entdeckt
Wissenschaftler*innen haben eine neue Korallenart entdeckt: Die Oktokoralle Swiftia phaeton wurde auf der weltweit größten Tiefwasserkorallenhügelkette gefunden.
20.06.2022
Genetik | Insektenkunde
Was ein Teebeutel über das Insektensterben erzählen kann
Man kennt die Szenerie aus TV-Krimis: Nach einem Verbrechen sucht die Spurensicherung der Kripo bis in den letzten Winkel eines Tatorts nach DNA des Täters.
20.06.2022
Mikrobiologie | Physiologie | Primatologie
Darmflora freilebender Assammakaken wird im Alter einzigartiger
Der Prozess ist vermutlich Teil des natürlichen Alterns und nicht auf eine veränderte Lebensweise zurückzuführen.
20.06.2022
Botanik | Evolution
Das Ergrünen des Landes
Ein Forschungsteam hat den aktuellen Forschungsstand zum Landgang der Pflanzen, der vor rund 500 Millionen Jahren stattfand, untersucht.
17.06.2022
Anatomie | Entwicklungsbiologie
Das Navi im Spermienschwanz
Nur etwa ein Dutzend der Millionen von Spermien schaffen den langen Weg durch den Eileiter bis zur Eizelle.
15.06.2022
Botanik | Klimawandel
Trotz Klimawandel: Keine Verschiebung der Baumgrenze
Die Lebensbedingungen für Wälder in Höhenlagen haben sich in den vergangenen Jahrzehnten infolge des Klimawandels signifikant verändert.