Mannose

Strukturformel
Mannose in Fischer-Projektion
Fischer-Projektion, offenkettige Darstellung
Allgemeines
Name Mannose
Andere Namen
  • (2S,3S,4R,5R)-Pentahydroxyhexanal
  • (2R,3R,4S,5S)-Pentahydroxyhexanal
Summenformel C6H12O6
Kurzbeschreibung

farb- und geruchloses, kristallines Pulver[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer
  • D: 3458-28-4
  • L: 10030-80-5
Wikidata [[:d:Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)|Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)]]
Eigenschaften
Molare Masse 180,16 g·mol−1
Aggregatzustand

fest

Dichte

1,54 g·cm−3[2]

Schmelzpunkt
  • D: 133 °C[2]
  • L: 129–131 °C[1]
Löslichkeit

gut löslich in Wasser (713 g·l−1 bei 17 °C)[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
Gefahrensymbol
H- und P-Sätze H: ?
EUH: ?
P: ?
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Mannose ist ein Epimer der Glucose. Als D-Mannose ist es eine natürliche Hexose und Baustein zahlreicher pflanzlicher Polysaccharide (Mannane). Im Organismus ist es hauptsächlich Bestandteil von Membranen. Bezogen auf Saccharose hat eine 10%-ige Lösung eine Süßkraft von 59 %.[3] L-Mannose besitzt nur geringe Bedeutung.

Chemie der Mannose

Verhalten in wässriger Lösung

In wässriger Lösung kommt es teilweise zu einem intramolekularen Ringschluss, sodass sich ein Gleichgewicht zwischen der Aldehydform und den beiden Ringformen (Furanose-Form und Pyranose-Form) einstellt, wobei die Mannose dann fast ausschließlich in der Pyranoseform vorliegt:

D-Mannose – Schreibweisen
Keilstrichformel Haworth-Schreibweise
D-Mannose Keilstrich.svg Alpha-D-Mannofuranose.svg
α-D-Mannofuranose
<1 %
Beta-D-Mannofuranose.svg
β-D-Mannofuranose
<1 %
Alpha-D-Mannopyranose.svg
α-D-Mannopyranose
67 %
Beta-D-Mannopyranose.svg
β-D-Mannopyranose
33 %

Mannose-Synthese

Durch die Glucose-6-Isomerase wird Glucose-6-Phosphat analog zur Glycolyse in Fructose-6-Phosphat umgewandelt, welches wiederum mittels der Mannose-6-phosphat-Isomerase zu Mannose-6-Phosphat isomerisiert wird. Eine weitere Umlagerung zu Mannose-1-phosphat wird durch das Enzym Phosphomannomutase katalysiert.

Abbau der Mannose

Gelangt freie Mannose in eine Zelle, so wird sie mittels des Enzyms Hexokinase zu Mannose-6-Phosphat phosphoryliert, wodurch sie lipophob wird, um die Zelle nicht mehr verlassen zu können. Wenn sie nicht zum Aufbau neuer Glycoproteine benötigt wird, wird sie über die Mannose-Phosphat-Isomerase zu Fructose-6-Phosphat umgewandelt, welches wiederum unter Energiegewinn der Glycolyse zugeführt werden kann.

GDP-Mannose

Eine Besonderheit der Mannose ist, dass ihre Aktivierung nicht über Uridintriphosphat (UTP), sondern über Guanosintriphosphat (GTP) erfolgt. Hierzu wird zuerst Mannose-6-Phosphat zu Mannose-1-Phosphat umgewandelt, welches dann weiter zur GDP-Mannose reagiert. Die Reaktionsfolge ist hierbei dieselbe wie bei der Reaktion von Glucose zu UDP-Glucose und bei der Glycogensynthese.

Toxizität für Insekten

Während Mannose für den Menschen nahezu ungiftig ist, besitzt diese für verschiedene Hautflügler wie Bienen[4] (zu denen auch die Hummeln gehören[5]) und die Gemeine Wespe Vespa vulgaris eine hohe Toxizität. Bei Bienen wurde eine Letale Dosis von 0,4–0,5 mg ermittelt. Die Giftwirkung beruht auf der Ähnlichkeit der Mannose zu Glucose, die zu einer kompetitiven Hemmung verschiedener Enzyme führt.[6]

Einzelnachweise

  1. 1,0 1,1 Datenblatt Mannose bei Acros, abgerufen am 23. März 2007.
  2. 2,0 2,1 2,2 2,3 Datenblatt Mannose bei Acros, abgerufen am 23. März 2007.
  3. Hans-Dieter Belitz, Werner Grosch und Peter Schieberle: Lehrbuch der Lebensmittelchemie. Springer, Berlin; 6., vollständig überarbeitete Auflage 2008; ISBN 978-3-540-73201-3; S. 263.
  4. Eintrag zu Mannose. In: Römpp Online. Georg Thieme Verlag
  5. Helge May: Hummelsterben im Nektarloch. Aus Naturschutz heute, Ausgabe 3/1995.
  6. Theodor Staudenmayer: Die Giftigkeit der Mannose für Bienen und andere Insekten. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, Vol. 26, Nummer 5, S. 644-668. doi:10.1007/BF00341096.

Weblinks

Wiktionary: Mannose – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Die News der letzten Tage

31.05.2023
Klimawandel | Meeresbiologie
Meeresspiegel, Monsun und die Entwicklung von Koralleninseln
Koralleninseln drohen angesichts des steigenden Meeresspiegels langsam zu versinken.
31.05.2023
Anthropologie | Bioinformatik | Neurobiologie
Intelligente Gehirne nehmen sich mehr Zeit für schwierige Aufgaben
Haben intelligente Menschen ein "schnelleres" Gehirn?
31.05.2023
Biodiversität | Klimawandel | Ökologie
Entwicklung der Artenvielfalt auf brachliegenden Flächen
In den vergangenen 50 Jahren sind immer mehr Menschen vom Land in die Stadt gezogen - Mehr als die Hälfte der Weltbevölkerung lebt heute in oder nahe einer Stadt.
31.05.2023
Bionik, Biotechnologie und Biophysik | Mikrobiologie
Mikroben unter Strom
Bei der mikrobiellen Elektrosynthese nutzen Mikroorganismen CO2 und Elektrizität, um zum Beispiel Alkohol zu produzieren.
30.05.2023
Mikrobiologie | Neobiota
Frosch mit Fracht: Invasive Arten kommen nicht allein
Senckenberg-Forschende haben neues invasionsbiologisches Konzept, die „nested invasions“ (verschachtelte Invasionen) vorgestellt.
27.05.2023
Klimawandel | Ökologie
Küsten als Klimaschützer
Die Küstenökosysteme in acht von zehn Weltregionen sind eine Netto-Treibhausgas-Senke.
26.05.2023
Biochemie | Klimawandel | Mikrobiologie
Mikroorganismen sind entscheidend für die Speicherung von Kohlenstoff in Böden
Laut einer neuen Studie spielen Mikroorganismen eine entscheidende Rolle bei der Kohlenstoffspeicherung in Böden.
26.05.2023
Land-, Forst-, Fisch- und Viehwirtschaft | Mikrobiologie | Mykologie
Raps und der Feind im Boden
Nutzpflanzen haben einen hohen Nährwert, das macht sie für uns Menschen essenziell – und auch attraktiv für schädliche Mikroorganismen.
25.05.2023
Meeresbiologie | Mikrobiologie | Ökologie
Unterwasserschall stört Meeresorganismen bei der Nahrungsaufnahme
Viele Meeresbewohner wie etwa Fische, Meeressäuger oder auch Krebstiere produzieren und nutzen Schall für ihre Navigation, Fortpflanzung oder Beutejagd.