Guanosin-3′,5′-bispyrophosphat

Strukturformel
Strukturformel von Guanosin-3′,5′-bispyrophosphat
Allgemeines
Name Guanosin-3′,5′-bispyrophosphat
Andere Namen
  • ppGpp
  • Guanosin-5′,3′-tetraphosphat
Summenformel C10H17N5O17P4
Externe Identifikatoren/Datenbanken
CAS-Nummer 32452-17-8
PubChem 766
DrugBank DB04022
Wikidata [[:d:Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)|Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)]]
Eigenschaften
Molare Masse 603,16 g·mol−1
Aggregatzustand

fest

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine Einstufung verfügbar[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Guanosin-3′,5′-bispyrophosphat, oder ppGpp ist das Signalmolekül einer bakteriellen Stressantwort, der sogenannten stringent response. Es ist ein Derivat des Guanosindiphosphats, das am 3'-Atom der Ribose eine zusätzliche Pyrophosphatgruppe trägt.

ppGpp wurde zuerst in Escherichia coli entdeckt. In E. coli ist ppGpp ein Indikator für Nährstoffmangel.

ppGpp Kreislauf

Strukturformel des Vorläufermoleküls pppGpp.

In E. coli wird das Vorläufermolekül pppGpp von zwei ppGpp-Synthetasen aus ATP und GTP hergestellt, RelA und SpoT. RelA kann zudem direkt ppGpp herstellen. Eine 5'-Phosphohydrolase[2] spaltet den Phosphatrest von pppGpp ab. RelA ist an die Ribosomen gebunden, fungiert als Sensor für unbeladene tRNAs und synthetisiert pppGpp bei Aminosäuremangel.[3] SpoT ist ein cytosolisches Protein[4] und synthetisiert pppGpp bei Glukosemangel.[5] Im Gegensatz zu RelA baut SpoT ppGpp zu Pyrophosphat und GDP ab.[6] Die DNA-Sequenzen der relA- und spoT-Gene von E. coli sind ähnlich, somit handelt es sich um paraloge Gene. Im N-terminus finden sich jedoch Unterschiede, die sogenannte HD-Domäne; die in Hydrolasen vorkommt, ist im relA-Gen mutiert.[7] Deswegen kann RelA ppGpp nicht abbauen.

Funktion

ppGpp bindet an die RNA-Polymerase[8] und hat einen tiefgreifenden Effekt auf die Transkription verschiedener Gene. Es verringert die Transkriptionsrate an rRNA-Genen und induziert die Transkription von Genen, die an der Aminosäurebiosynthese beteiligt sind. ppGpp ist ein globaler Regulator der Genexpression in E. coli.[9]

ppGpp in anderen Bakterien

Im Gegensatz zu E. coli und vielen anderen Bakterien verfügen manche Bakterien, z. B. Bacillus subtilis und viele andere grampositive Bakterien, nur über eine einziges ppGpp metabolisierendes Enzym, das ppGpp herstellt und abbaut.[10] In vielen pathogenen Bakterien spielt ppGpp eine wichtige Rolle als globaler Regulator der Genexpression. Bei diesen Bakterien ist ppGpp sogar als Virulenzfaktor identifiziert:

Somit stellt die ppGpp-Synthese einen bisher nicht identifizierten, möglichen Angriffsort für neuartige Antibiotika dar. In Streptomyces coelicolor und anderen Streptomyceten ist ppGpp für Antibiotikabiosynthese notwendig.[19]
Bei Rhizobien ist ppGpp essentiell für die Symbiose zwischen Bakterium und Pflanze und für die Stickstofffixierung.[20][21] Bei Archaeen wurde ppGpp bisher nicht nachgewiesen.

ppGpp in Pflanzen

ppGpp kommt auch in Pflanzen vor. Es wird in den Chloroplasten synthetisiert und spielt ebenfalls eine wichtige Rolle bei der Adaptation an veränderte Umweltbedingungen.[22]

Literatur

  1. Dieser Stoff wurde in Bezug auf seine Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  2. Keasling, JD. et al. (1993): Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. In: PNAS 90(15), 7029–7033, PMID 8394006; PMC 47069 (freier Volltext, PDF).
  3. Haseltine., W. und Block, R. (1973): Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. In: PNAS 70(5), 1564–1568, PMID 4576025; PMC 433543 (freier Volltext, PDF).
  4. Gentry, DR. und Cashel, M. (1995): Subcellular localization of the Escherichia coli SpoT protein. In: J. Bacteriol. 177(13), 3890–3893, PMID 7601859; PMC 177113 (freier Volltext, PDF).
  5. Hernandez, VJ. und Bremer, H. (1991): Escherichia coli ppGpp-synthetase II activity requires spoT. In: J. Biol. Chem. 266(9), 5991–5999, PMID 2005135; PDF (freier Volltextzugriff, engl.)
  6. Murray, KD. und Bremer, H. (1996): Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. In: J. Mol. Biol. 259(1), 41–57, PMID 8648647; doi:10.1006/jmbi.1996.0300
  7. Aravind, L. und Koonin, EV. (1998): The HD domain defines a new superfamily of metal-dependent phosphohydrolases. In: Trends Biochem Sci. 23(12), 469–472, PMID 9868367; doi:10.1016/S0968-0004(98)01293-6
  8. Artsimovitch, I. et al. (2004): Structural basis for transcription regulation by alarmone ppGpp. In: Cell 117(3), 299–310, PMID 15109491; PDF (freier Volltextzugriff, engl.)
  9. Magnusson, LU. et al. (2005): ppGpp: a global regulator in Escherichia coli. In: Trends Microbiol. 13(5), 236–242, PMID 15866041; doi:10.1016/j.tim.2005.03.008
  10. Mittenhuber, G. (2001): Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). In: J. Mol. Microbiol. Biotechnol. 3(4), 585–600, PMID 11545276
  11. Warner, DF. und Mizrahi, V. (2006): Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. In: Clin. Microbiol. Rev. 19(3), 558–570, PMID 16847086; PDF (freier Volltextzugriff, engl.)
  12. Molofsky, AB. und Swanson, MS. (2004): Differentiate to thrive: lessons from the Legionella pneumophila life cycle. In: Mol. Microbiol. 53(1); 29–40, PMID 15225301; PDF (freier Volltextzugriff, engl.)
  13. Erickson, DL. et al. (2004): Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. In: Infect. Immun. 72(10), 5638–5645, PMID 15385461; PDF (freier Volltextzugriff, engl.)
  14. Bugrysheva, JV. et al. (2005): Borrelia burgdorferi rel is responsible for generation of guanosine-3'-diphosphate-5'-triphosphate and growth control. In: Infect. Immun. 73(8), 4972–4981, PMID 16041012; PDF (freier Volltextzugriff, engl.)
  15. Haralalka, S. et al. (2003): Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. In: J. Bacteriol. 185(16), 4672–4682, PMID 12896985; PDF (freier Volltextzugriff, engl.)
  16. Taylor, CM. et al. (2002): Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. In: J. Bacteriol. 184(3), 621–628, PMID 11790730; PDF (freier Volltextzugriff, engl.)
  17. Dozot M, Boigegrain RA, Delrue RM, Hallez R, Ouahrani-Bettache S, Danese I, Letesson JJ, De Bolle X, Kohler S. The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system VirB. Cell. Microbiol. 2006 PMID 16803581
  18. Kim S, Watanabe K, Suzuki H, Watarai M. Roles of Brucella abortus SpoT in morphological differentiation and intramacrophagic replication. Microbiology. 151, 1607-1617, 2005 PMID 15870469
  19. Martinez-Costa OH, Arias P, Romero NM, Parro V, Mellado RP, Malpartida F. A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. J. Biol. Chem. 271, 10627-10634, 1996 PMID 8631867
  20. Moris M, Braeken K, Schoeters E, Verreth C, Beullens S, Vanderleyden J, Michiels J. Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J. Bacteriol. 187, 5460-5469, 2005 PMID 16030240
  21. Calderon-Flores A, Du Pont G, Huerta-Saquero, A, Merchant-Larios H, Servin-Gonzalez L, Duran S. The stringent response is required for amino acid and nitrate utilization, nod factor regulation, nodulation, and nitrogen fixation in Rhizobium etli. J. Bacteriol. 187, 5075-5083, 2005 PMID 16030199
  22. Takahashi K, Kasai K, Ochi K. Identification of the bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in plants. Proc. Natl. Acad. Sci. USA, 101, 4320-4324, 2004 PMID 15010537

Die News der letzten Tage

22.03.2023
Physiologie
Startschuß zur optischen Wahrnehmung
Forschende haben den molekularen Vorgang entschlüsselt, der als Allererstes im Auge abläuft, wenn Licht auf die Netzhaut trifft.
22.03.2023
Neurobiologie
Wettbewerb zwischen den Gehirnhälften im Schlaf
Der Mensch ist beidseitig symmetrisch: unser Gehirn besteht aus zwei Hälften, den so genannten Hemisphären.
22.03.2023
Neurobiologie | Physiologie
Warum wir von Schokoriegeln und Co. nicht die Finger lassen können
Schokoriegel, Chips und Pommes - warum können wir sie im Supermarkt nicht einfach links liegen lassen?
22.03.2023
Biochemie | Genetik | Zytologie
Aus Perspektive eines Ingenieurs ist Biologie chaotisch und unvollkommen
Der Vorteil von Redundanz in biologischen Systemen.
21.03.2023
Paläontologie
Neue Augen bei Trilobiten entdeckt
Wissenschaftler*innen der Universitäten Köln und Edinburgh entdecken bisher übersehene Augen bei Trilobiten.
21.03.2023
Bionik, Biotechnologie und Biophysik | Bioinformatik
Molekularbiologie trifft auf Quantenphysik
Biologische Systeme sind hochkomplex: Sie werden vor allem über genregulatorische Netzwerke gesteuert, in denen Gene, Proteine und RNA auf vielfältige Art interagieren.
21.03.2023
Astrobiologie | Bionik, Biotechnologie und Biophysik
Leben auf fernen Monden
Flüssiges Wasser gehört zu den wichtigsten Bedingungen für die Entstehung von Leben, wie wir es auf der Erde kennen.
21.03.2023
Biodiversität | Ökologie
Die Fichte stirbt und andere Bäume leiden
Ergebnisse der Waldzustandserhebung 2022 zeigen: Kronenverlichtungen für alle Baumarten weiterhin hoch.
21.03.2023
Genetik | Klimawandel | Physiologie | Zytologie
Modell Arabidopsis thaliana: Ein neuer Signalweg bei niedrigem Sauerstoffgehalt
Der Klimawandel führt zu einem vermehrten Auftreten von Wetterextremen: Im Fokus stehen bisher vor allem lange Dürre- und Hitzeperioden.
21.03.2023
Biodiversität | Taxonomie
Neue Arten der Riesenkrabbenspinnen beschrieben
Ein Forschungsteam aus Deutschland und aus China hat 99 neue Arten aus der Familie der Riesenkrabbenspinnen in Süd-, Ost- und Südostasien beschrieben.
20.03.2023
Biodiversität | Neobiota
Weitverbreitete Arten auf dem Vormarsch
Das menschliche Verhalten treibt den Wandel der Biodiversität und Veränderungen in der Zusammensetzung der Arten rapide voran.