Allosterischer Modulator

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

Als allosterischer Modulator wird in der Biochemie und Pharmakologie eine Substanz bezeichnet, welche die Effekte eines orthosterischen Liganden, z. B. eines Agonisten oder eines inversen Agonisten, an einem Zielprotein, in der Regel einem Rezeptor, verändert (moduliert). Allosterische Modulatoren binden an eine andere (allosterische) Bindungsstelle als die orthosterische Agonistenbindungsstelle. Sie führen zu einer Konformationsänderung des Rezeptor-Proteins, wodurch sich die Rezeptor-Affinität oder die Aktivität des orthosterischen Liganden ändert. Der positive allosterische Modulator (PAM) führt zu einer Verstärkung, der negative allosterische Modulator (NAM) zu einer Abschwächung der Effekte eines Agonisten oder inversen Agonisten, ohne selbst, d. h. in Abwesenheit eines Agonisten oder inversen Agonisten, eine Wirkung zu zeigen. Stoffe, die die allosterische Bindungsstelle besetzen, sich aber funktionell neutral verhalten, werden stille Modulatoren genannt (SAM). Bekannte allosterische Modulatoren sind die Benzodiazepine, welche die Aktivität des GABA-Rezeptors erhöhen.

Von den Modulatoren zu unterscheiden sind allosterische Agonisten, welche fähig sind, in Abwesenheit eines orthosterischen Liganden einen Rezeptor über eine Bindung an einer allosterischen Bindungsstelle unmittelbar zu aktivieren. Ferner gibt es ago-allosterische Modulatoren, die sowohl als allosterische Agonisten (Aktivatoren) als auch als allosterische Modulatoren wirken.

In der englischsprachigen Literatur wird mit den Begriffen on-target und off-target allosterism der Ort der Bindung klassifiziert und zeigt an, ob ein Modulator am selben Protein bindet wie der orthosterische Ligand oder ob er an einem Partner-Protein bindet, wie dies bei GPCR-Oligomeren vorkommt.

Literatur

  • Christopoulos A, Kenakin T: G protein-coupled receptor allosterism and complexing. In: Pharmacol. Rev.. 54, Nr. 2, Juni 2002, S. 323–74. PMID 12037145.

Die News der letzten Tage

22.06.2022
Bionik, Biotechnologie, Biophysik | Insektenkunde
Forschung mit Biss
Wie stark können Insekten zubeißen?
21.06.2022
Klimawandel | Meeresbiologie
Algenmatten im Mittelmeer als Zufluchtsort für viele Tiere
Marine Ökosysteme verändern sich durch den Klimawandel, auch im Mittelmeer.
21.06.2022
Taxonomie | Meeresbiologie
Korallengärten auf der „Mauretanischen Mauer“ entdeckt
Wissenschaftler*innen haben eine neue Korallenart entdeckt: Die Oktokoralle Swiftia phaeton wurde auf der weltweit größten Tiefwasserkorallenhügelkette gefunden.
20.06.2022
Genetik | Insektenkunde
Was ein Teebeutel über das Insektensterben erzählen kann
Man kennt die Szenerie aus TV-Krimis: Nach einem Verbrechen sucht die Spurensicherung der Kripo bis in den letzten Winkel eines Tatorts nach DNA des Täters.
20.06.2022
Mikrobiologie | Physiologie | Primatologie
Darmflora freilebender Assammakaken wird im Alter einzigartiger
Der Prozess ist vermutlich Teil des natürlichen Alterns und nicht auf eine veränderte Lebensweise zurückzuführen.
20.06.2022
Botanik | Evolution
Das Ergrünen des Landes
Ein Forschungsteam hat den aktuellen Forschungsstand zum Landgang der Pflanzen, der vor rund 500 Millionen Jahren stattfand, untersucht.
17.06.2022
Anatomie | Entwicklungsbiologie
Das Navi im Spermienschwanz
Nur etwa ein Dutzend der Millionen von Spermien schaffen den langen Weg durch den Eileiter bis zur Eizelle.
15.06.2022
Botanik | Klimawandel
Trotz Klimawandel: Keine Verschiebung der Baumgrenze
Die Lebensbedingungen für Wälder in Höhenlagen haben sich in den vergangenen Jahrzehnten infolge des Klimawandels signifikant verändert.