2,3-Butandiolgärung

Strukturformel von 2,3-Butandiol, dem namensgebenden Endprodukt der 2,3-Butandiolgärung
Übergeordnet
Glykolytische Gärung
Metabolismus der D-Glucose
Gene Ontology
QuickGO

Die 2,3-Butandiolgärung ist ein Weg des Abbaus von Zuckern zur Energiegewinnung unter anoxischen Bedingungen, der bei einigen fakultativ anaeroben Bakterien vorkommt, insbesondere bei einigen Gattungen der Enterobakterien. Der Abbau der Zucker verläuft auf verschiedenen Wegen und es werden eine Reihe von Endprodukten gebildet, im Wesentlichen Kohlenstoffdioxid (CO2), 2,3-Butandiol, Ethanol und Formiat (Anion der Ameisensäure). Formiat kann auch vollständig oder zum Teil in elementaren, molekularen Wasserstoff (H2) und Kohlenstoffdioxid (CO2) gespalten werden. Daneben werden oft in geringeren Mengen andere Endprodukte gebildet, z. B. Lactat und Acetat. Charakteristisch ist die Bildung der namensgebenden organischen Verbindung 2,3-Butandiol in größeren Mengen. Im Vergleich zur Gemischten Säuregärung werden auch Gase in größeren Mengen, Säuren aber nur in geringen Mengen gebildet. Die Butandiolgärung ist neben der Gemischten Säuregärung eine der beiden Formen der Ameisensäuregärungen.

Verlauf der Gärung

Schema des Verlaufs der 2,3-Butandiolgärung, für Einzelheiten bitte Text beachten. Im Gegensatz zur Gemischten Säuregärung werden sehr viel weniger Säuren, insbesondere D-Lactat und Acetat, freigesetzt. Daher sind diese Produkte im Schema aufgehellt.

Hexosen werden typischerweise über den Weg der Glykolyse zu Pyruvat (dem Anion der Brenztraubensäure (2-Oxopropansäure)) abgebaut, wobei durch Substratkettenphosphorylierung ATP erzeugt wird. Zum kleinen Teil werden diese auch über den Entner-Doudoroff-Weg (ED-Weg) zu Pyruvat umgesetzt. Beim Abbau wird NAD+ zu NADH reduziert. Damit dieses für weitere Runden der Glykolyse bzw. dem ED-Weg bereitsteht, wird es auf durch die im weiteren Verlauf der Gärung gebildete Zwischenprodukte wieder zu NAD+ reoxidiert. Im Gegensatz zur Gemischten Säuregärung entstehen bei der 2,3-Butandiolgärung weniger Säuren, mehr Kohlenstoffdioxid und das namensgebende Butandiol.[1]

Das Verhältnis des Massenflusses der einzelnen Wege und damit das Massenverhältnis der Endprodukte kann variieren. Bei Enterobacter aerogenes wurde die Menge der erzeugten organischen Verbindungen gemessen. Ein Mol Glucose wird hierbei umgesetzt zu:[2]

$ \mathrm {Glucose\longrightarrow 0,03\ Lactat+0,01\ Acetat+0,70\ Ethanol} $ $ \mathrm {+\ 0,66\ Butandiol+0,18\ Formiat+1,72\ CO_{2}+0,36\ H_{2}} $

Biochemie

Bildung von Butandiol

Zwei Moleküle Pyruvat kondensieren zu Acetyllactat, wobei bei Kohlenstoffdioxid freigesetzt wird. Diese Reaktion wird von einer Thiaminpyrophosphat-abhängigen Acetolactatsynthase katalysiert. Eine erneute Decarboxylierung wird von einer Acetyllactatdecarboxylase durchgeführt. Das Produkt ist Acetoin. Dieses wird schließlich zu 2,3-Butandiol unter Verbrauch von NADH reduziert, was eine Butandioldehydrogenase katalysiert.

Durch die beiden Decarboxylierungen entsteht viel Kohlenstoffdioxidgas. Zudem werden aus zwei Molekülen Pyruvat, starke Säuren mit einem pKS-Wert von jeweils 3,7, zwei Moleküle Kohlenstoffdioxid (pKS = 6,3) und die neutrale Verbindung Butandiol gebildet. Infolgedessen wird das Medium schwächer angesäuert als im Vergleich zur Gemischten Säuregärung.

Bildung von Formiat, Wasserstoff und Kohlenstoffdioxid

Pyruvats kann unter Einbeziehung von Coenzym A durch das Enzym Pyruvat-Formiat-Lyase (PFL) in Acetyl-CoA und Formiat gespalten werden. PFL ist das nur unter anoxischen Bedingungen gebildete Schlüsselenzym dieser Gemischten Säuregärung.[3] Es ersetzt unter diesen Bedingungen die Pyruvatdehydrogenase.[2] Formiat wird größtenteils von den Bakterien ausgeschieden. Falls ein geeigneter Elektronenakzeptor vorhanden, wird es im Zuge der Fumaratatmung durch eine membranständige Formiat-Dehydrogenase zu Kohlenstoffdioxid oxidiert, wobei die Elektronen auf Menachinon übertragen werden. Falls diese Möglichkeit nicht mehr besteht und der pH-Wert des Mediums sinkt, wird Formiat nicht mehr ausgeschieden und durch eine cytosolische Formiat-Hydrogen-Lyase in CO2 und H2 gespaltet. Bei diesem Vorgang werden die gebundenen Reduktionsäquivalente als Wasserstoffgas freigesetzt. Da eine starke Säure (pKS = 3,7) in Wasserstoffgas (neutral) und Kohlenstoffdioxid (pKS = 6,3) umgesetzt wird, wirkt die Formiat-Hydrogen-Lyase der Ansäuerung des Mediums entgegen.[2]

Bildung von Acetat und Ethanol

Bei der Spaltung des Pyruvates entsteht Acetyl-CoA. Die energiereiche Thioesterbindung kann konserviert werden, indem Coenzym A gegen Phosphat ausgetauscht wird. Diese Reaktion wird durch eine Phosphotransacetylase katalysiert, es entsteht Acetylphosphat. Eine Acetatkinase setzt dieses schließlich zu Acetat um, wobei durch Substratkettenphosophorylierung ATP erzeugt wird.

Acetyl-CoA kann aber auch durch eine Coenzym-A-abhängige Alkoholdehydrogenase, ein bifunktionelles Enzym, zu Ethanol unter Verbrauch von zwei Molekülen NADH reduziert werden. Im Gegensatz zu anderen Alkoholdehydrogenasen wird Acetaldehyd als Zwischenprodukt nicht freigesetzt.[3] Bei diesem Vorgang wird kein ATP erzeugt.

Die Bildung von Acetat ist bei der 2,3-Butandiolgärung aber vernachlässigbar.

Bildung von D-Lactat

NAD+ kann auch dadurch reoxdiert werden, indem Pyruvat zu D-Lactat reduziert wird. Dies wird von einer D-Lactatdehydrogenase katalysiert, im Gegensatz zur Milchsäuregärung entsteht dadurch das D-Isomer.[1] Die Bildung von D-Lactat ist ebenfalls vernachlässigbar.

Vorkommen

Von den jeweils weitaus meisten Arten der folgenden Enterobakterien werden Zucker auf dem Weg der 2,3-Butandiolgärung abgebaut:[4] Enterobacter, Klebsiella, Serratia, Erwinia.[5]

Bedeutung

Der Abbau von Zuckern auf dem Weg der 2,3-Butandiolgärung ist ein taxonomisches Merkmal, das zur Identifizierung von Bakterien, besonders von Enterobakterien, verwendet wird. Ob dieser Abbauweg vorliegt, wird festgestellt, indem auf das Zwischenprodukt Acetoin geprüft wird, weil dies für die 2,3-Butandiolgärung charakteristisch ist. Als Nachweis für Acetoin dient die Voges-Proskauer-Reaktion. Im Gegensatz zu den Entereobakterien, die viele Säuren durch die Gemischte Säuregärung erzeugen, fällt damit der Nachweis mit Methylrot-Probe negativ aus. Die erhöhte Gasbildung an Kohlenstoffdioxid macht sich in der volumetrischen Bestimmung bemerkbar.[1]

Die 2,3-Butandiolgärung erlangt auch einige Bedeutung in der Lebensmittelindustrie. Das von manchen Milchsäurebakterien gebildete Acetoin wird durch Oxidation zu Diacetyl umgesetzt, was eine Hauptaromakomponente der Butter ist.

Literatur

  • Georg Fuchs (Hrsg.): Allgemeine Mikrobiologie (begr. von Hans G. Schlegel). 8. Auflage. Georg Thieme Verlag, Stuttgart, New York 2007, ISBN 978-3-13-444608-1.

Einzelnachweise

  1. 1,0 1,1 1,2 Garabed Antranikian: Angewandte Mikrobiologie. Springer, Berlin 2006; ISBN 978-3540240839; S. 65f.
  2. 2,0 2,1 2,2 Georg Fuchs (Hrsg.), Hans. G. Schlegel (Autor): Allgemeine Mikrobiologie. Thieme Verlag Stuttgart; 8. Auflage 2007; ISBN 3-13-444608-1; S. 366f.
  3. 3,0 3,1 Katharina Munk (Hrsg.): Taschenlehrbuch Biologie: Mikrobiologie. Thieme Verlag Stuttgart 2008; ISBN 978-3-13-144861-3; S. 379ff.
  4. Michael T. Madigan und John M. Martinko: Brock Mikrobiologie. Pearson Studium; 11., überarb. Auflage 2006; ISBN 978-3-8273-7187-4; S. 397
  5. Wolfgang Fritsche: Mikrobiologie. Spektrum Akademischer Verlag; 3., Auflage 2001; ISBN 978-3827411075; S. 243f.

Die News der letzten Tage

29.03.2023
Entwicklungsbiologie | Neurobiologie | Zytologie
Wenn Nervenzellen hungern
Die Entwicklung unseres Gehirns benötigt die richtigen Nährstoffe zur richtigen Zeit. Diese liefern die notwendige Energie für zelluläre Prozesse, die der Gehirnbildung zugrunde liegen. Was passiert aber, wenn diese Stoffe nicht verfügbar sind?
29.03.2023
Neurobiologie
Anders als gedacht: Gehirn verarbeitet Seheindrücke auch rückwärts
Warten wir auf der Straße auf jemanden, mit dem wir verabredet sind, erkennen wir die Person meistens oft schon von Weitem zwischen anderen Menschen.
28.03.2023
Mikrobiologie | Physiologie | Vogelkunde
Darmflora von Seevögeln durch Mikroplastik verändert
Je mehr Mikroplastik wilde Seevögel wie Eissturmvogel und Corysturmtaucher mit der Nahrung aufnehmen, desto stärker verändert sich die mikrobielle Vielfalt im Darm.
28.03.2023
Klimawandel | Ökologie
Frost im Frühling: Wie Bäume damit zurechtkommen
Durch den Klimawandel treiben viele Laubbäume früher aus, doch das Risiko von Spätfrösten im Frühjahr bleibt hoch und extreme Trockenphasen werden häufiger.
28.03.2023
Klimawandel | Primatologie
Klimawandel bedroht Lemuren auf Madagaskar
Mausmaki: Auch vermeintlich anpassungsfähige Säugetierarten haben ein erhöhtes Aussterberisiko.
23.03.2023
Genetik | Physiologie
Gene für Augenfarbe wichtig für eine gesunde Netzhaut
Forscher untersuchten, wie vier Gene der Fruchtfliege Drosophila, die für die Farbgebung der Augen verantwortlich sind, auch für die Gesundheit des Netzhautgewebes essentiell sind.
23.03.2023
Genetik | Physiologie
An der „Auferstehung“ sind viele Gene beteiligt
Manche Pflanzen können Monate ohne Wasser überleben, um dann nach einem kurzen Regenguss wieder zu ergrünen.
22.03.2023
Physiologie
Startschuß zur optischen Wahrnehmung
Forschende haben den molekularen Vorgang entschlüsselt, der als Allererstes im Auge abläuft, wenn Licht auf die Netzhaut trifft.
22.03.2023
Neurobiologie
Wettbewerb zwischen den Gehirnhälften im Schlaf
Der Mensch ist beidseitig symmetrisch: unser Gehirn besteht aus zwei Hälften, den so genannten Hemisphären.
22.03.2023
Neurobiologie | Physiologie
Warum wir von Schokoriegeln und Co. nicht die Finger lassen können
Schokoriegel, Chips und Pommes - warum können wir sie im Supermarkt nicht einfach links liegen lassen?
22.03.2023
Biochemie | Genetik | Zytologie
Aus Perspektive eines Ingenieurs ist Biologie chaotisch und unvollkommen
Der Vorteil von Redundanz in biologischen Systemen.
21.03.2023
Paläontologie
Neue Augen bei Trilobiten entdeckt
Wissenschaftler*innen der Universitäten Köln und Edinburgh entdecken bisher übersehene Augen bei Trilobiten.
21.03.2023
Bionik, Biotechnologie und Biophysik | Bioinformatik
Molekularbiologie trifft auf Quantenphysik
Biologische Systeme sind hochkomplex: Sie werden vor allem über genregulatorische Netzwerke gesteuert, in denen Gene, Proteine und RNA auf vielfältige Art interagieren.