Immergrüne Pflanze

Zweig einer Weißtanne mit den Nadeln aus drei Jahren

Als immergrüne Pflanze bezeichnet man in der Botanik eine Pflanze, die das ganze Jahr ihre Blätter behält. Hierbei bleibt das einzelne Blatt mindestens 12 Monate bestehen. Das Gegenstück sind laubabwerfende Pflanzen, die für einen Teil des Jahres all ihre Blätter verlieren.

Die Blatthaltbarkeit bei immergrünen Pflanzen variiert zwischen knapp über einem Jahr (die alten Blätter werden kurz nach dem Wachsen der neuen Blätter abgeworfen) bis zu einem Maximum von 45 Jahren bei der Langlebigen Kiefer (Pinus longaeva). Arten mit einer Blatthaltbarkeit von über fünf Jahren sind aber selten.

Ein Spezialfall ist die Welwitschie, eine afrikanische nacktsamige Pflanze, die nur zwei Blätter hat. Diese wachsen aber über die gesamte Lebenszeit der Pflanze kontinuierlich. Das Blattende stirbt jeweils ab und verwittert. Die Haltbarkeit eines Blattstücks liegt hierbei zwischen 20 und 40 Jahren.

Gründe

In warmen tropischen Regionen sind die meisten Pflanzen des Regenwalds immergrün. Sie ersetzen ihre Blätter Stück für Stück über das Jahr, je nachdem wie die Blätter altern und abfallen. Pflanzen in Klimaten mit Trockenperioden können immergrün oder laubabwerfend sein. In warmen gemäßigten Klimaten sind die meisten Pflanzen immergrün. In kalten gemäßigten Klimaten sind weniger immergrüne Pflanzen zu finden, da nur wenige immergrüne Pflanzen Temperaturen unter −25 °C aushalten. Die häufigsten immergrünen Pflanzen in diesen Gegenden sind die Nadelbäume.

In Gegenden, in denen es einen Grund für Pflanzen gibt, laubabwerfend zu sein, sei es wegen einer kalten oder einer trockenen Jahreszeit, ist immergrün zu sein meist eine Anpassung an niedrige Nährstoffgehalte. Laubabwerfende Bäume verlieren mit jedem Laubabwurf Nährstoffe, die sie beim Bilden der neuen Blätter erneut aus dem Boden ziehen müssen. Wenn nur wenig Nährstoffe verfügbar sind, haben immergrüne Pflanzen einen Vorteil, auch wenn deren Blätter oder Nadeln Kälte oder Trockenheit widerstehen müssen und auch wenn diese nicht so effizient Photosynthese betreiben können. In warmen Klimaten können insbesondere Arten wie die Pinie oder die Zypresse mit kargen Böden auskommen. In der Taiga oder in borealen Wäldern zersetzt sich organisches Material aufgrund der Kälte nur langsam. Die Nährstoffe aus abgeworfenen Blättern stehen also nicht schnell wieder zur Verfügung. Auch hierdurch werden immergrüne Pflanzen bevorzugt.

In gemäßigten Klimaten begünstigen sich immergrüne Pflanzen selbst: die abgeworfenen Nadeln (oder ggf. Blätter) von immergrünen Pflanzen haben ein höheres Kohlenstoff-Stickstoff-Verhältnis als die von Laubbäumen. Dies führt zu einem saureren Boden und zu einem niedrigeren Stickstoffgehalt. Dies macht es für Laubbäume schwerer zu bestehen.

Literatur

  • R. Aerts: The advantages of being evergreen. In: Trends in Ecology & Evolution. Band 10, Nr. 10, 1995, S. 402–407.
  • F. W. Ewers, R. Schmid: Longevity of needle fascicles of Pinus longaeva (Bristlecone Pine) and other North American pines. In: Oecologia. Band 51, 1981, S. 107–115.
  • R. Matyssek: Carbon, water and nitrogen relations in evergreen and deciduous conifers. In: Tree Physiology. Band 2, 1986, S. 177–187.
  • M. A. Sobrado: Cost-Benefit Relationships in Deciduous and Evergreen Leaves of Tropical Dry Forest Species. In: Functional Ecology. Band 5, Nr. 5, 1991, S. 608–616.

News mit dem Thema Immergrüne Pflanze

Die News der letzten Tage

22.03.2023
Physiologie
Startschuß zur optischen Wahrnehmung
Forschende haben den molekularen Vorgang entschlüsselt, der als Allererstes im Auge abläuft, wenn Licht auf die Netzhaut trifft.
22.03.2023
Neurobiologie
Wettbewerb zwischen den Gehirnhälften im Schlaf
Der Mensch ist beidseitig symmetrisch: unser Gehirn besteht aus zwei Hälften, den so genannten Hemisphären.
22.03.2023
Neurobiologie | Physiologie
Warum wir von Schokoriegeln und Co. nicht die Finger lassen können
Schokoriegel, Chips und Pommes - warum können wir sie im Supermarkt nicht einfach links liegen lassen?
22.03.2023
Biochemie | Genetik | Zytologie
Aus Perspektive eines Ingenieurs ist Biologie chaotisch und unvollkommen
Der Vorteil von Redundanz in biologischen Systemen.
21.03.2023
Paläontologie
Neue Augen bei Trilobiten entdeckt
Wissenschaftler*innen der Universitäten Köln und Edinburgh entdecken bisher übersehene Augen bei Trilobiten.
21.03.2023
Bionik, Biotechnologie und Biophysik | Bioinformatik
Molekularbiologie trifft auf Quantenphysik
Biologische Systeme sind hochkomplex: Sie werden vor allem über genregulatorische Netzwerke gesteuert, in denen Gene, Proteine und RNA auf vielfältige Art interagieren.
21.03.2023
Astrobiologie | Bionik, Biotechnologie und Biophysik
Leben auf fernen Monden
Flüssiges Wasser gehört zu den wichtigsten Bedingungen für die Entstehung von Leben, wie wir es auf der Erde kennen.
21.03.2023
Biodiversität | Ökologie
Die Fichte stirbt und andere Bäume leiden
Ergebnisse der Waldzustandserhebung 2022 zeigen: Kronenverlichtungen für alle Baumarten weiterhin hoch.
21.03.2023
Genetik | Klimawandel | Physiologie | Zytologie
Modell Arabidopsis thaliana: Ein neuer Signalweg bei niedrigem Sauerstoffgehalt
Der Klimawandel führt zu einem vermehrten Auftreten von Wetterextremen: Im Fokus stehen bisher vor allem lange Dürre- und Hitzeperioden.
21.03.2023
Biodiversität | Taxonomie
Neue Arten der Riesenkrabbenspinnen beschrieben
Ein Forschungsteam aus Deutschland und aus China hat 99 neue Arten aus der Familie der Riesenkrabbenspinnen in Süd-, Ost- und Südostasien beschrieben.
20.03.2023
Biodiversität | Neobiota
Weitverbreitete Arten auf dem Vormarsch
Das menschliche Verhalten treibt den Wandel der Biodiversität und Veränderungen in der Zusammensetzung der Arten rapide voran.