Paläozän

System Serie Stufe ≈ Alter (mya)
später später später jünger
P
 
a
 
l
 
ä
 
o
 
g
 
e
 
n
Oligozän Chattium 23,03

28,1
Rupelium 28,1

33,9
Eozän Priabonium 33,9

38
Bartonium 38

41,3
Lutetium 41,3

47,8
Ypresium 47,8

56
Paläozän Thanetium 56

59,2
Seelandium 59,2

61,6
Danium 61,6

66
früher früher früher älter

Das Paläozän, in Fachpublikationen auch als Paleozän (analog engl. Paleocene) transkribiert, ist in der Erdgeschichte ein Zeitintervall, die unterste chronostratigraphische Serie (bzw. Epoche in der Geochronologie) des Paläogens (früher des Tertiärs). Das Paläozän begann vor ca. 65,5 Millionen Jahren und endete vor etwa 55,8 Millionen Jahren. Es ist zwischen der Kreide, dem letzten System des Mesozoikums (Erdmittelalter) und dem Eozän eingeordnet.

Namensgebung und Geschichte

Nach der ursprünglichen Aufteilung des Tertiärs in die drei Serien Eozän, Miozän und Pliozän durch Charles Lyell führte 1847 der Paläobotaniker Wilhelm Philipp Schimper als weitere Unterteilung das Paläozän ein. Schimper war an der Universität Straßburg tätig und verfasste seine Arbeiten in französischer Sprache. Die Transkription des von ihm in die Geologie eingeführten Wortes „paléocène“ ist im Deutschen umstritten, vielfach wird statt der Form „Paläozän“ auch die Schreibweise „Paleozän“ verwendet. Letztere geht auf die Ansicht zurück, Schimper habe den Namen der von ihm begründeten Periode „paléocène“ aus „pal(éo)-“ und „-éocène“ (also in der Bedeutung „Alt-Eozän“) zusammengezogen. Im Zusammenhang von Schimpers Arbeit gibt es aber mehr Hinweise darauf, dass er den Begriff aus den Bestandteilen „paléo-“ (von griech. παλαιός = alt) und „-cène“ (von griech. καινός = neu, ungewöhnlich) gebildet hat, so wie auch die anderen Epochen des Känozoikums auf „-zän“ enden. Auf diese Ansicht gründet sich die heute im deutschen Sprachgebrauch hauptsächlich verwendete Schreibweise „Paläozän“[1]. Die Stratigraphische Tabelle von Deutschland von 2002 verwendet allerdings die Schreibweise Paleozän. Es bleibt aber abzuwarten, ob damit die Entscheidung zugunsten der Schreibweise Paleozän gegenüber Paläozän endgültig gefallen ist.

Definition und GSSP

Die Untergrenze des Paläozäns (und damit des Paläogen und des Danium) ist der Top der Iridium-Anomalie der Kreide-Tertiär-Grenze. Die Obergrenze (und damit auch die Basis von Eozän und Ypresium) ist durch eine Änderung im Kohlenstoff-Isotopen-Verhältnis ("Carbon Isotope Escursion") definiert. Der GSSP des Paläozäns (und damit auch die GSSP von Paläogen und Danium) ist ein Profil bei El Kef in Tunesien.

Untergliederung

Das Paläozän wird in drei chronostratigraphische Stufen

untergliedert. Regional wurden noch eine ganze Reihe weiterer Stufen vorgeschlagen, die entweder nur regional benutzt wurden oder sich nicht als international anerkannte Stufen durchsetzen konnten.

Verteilung der Kontinente

Das Gesicht der Erde unterschied sich durch die unterschiedliche Verteilung der Kontinente im Paläozän noch deutlich vom heutigen Anblick. Am Beginn der Epoche waren noch einige Bruchstücke des alten Südkontinents Gondwana miteinander verbunden. So waren Australien und Südamerika noch mit der Antarktis verbunden, Afrika und Indien jedoch weiter nördlich bereits isoliert. Zwischen diesen Südkontinenten und dem nördlich gelegenen Laurasien legte sich die Tethys wie ein Gürtel um die Erde. Nordamerika war über Grönland mit Europa verbunden und hatte über die Beringstraße auch mit Ostasien Kontakt. Dafür befand sich ein Flachmeer, die Turgai-Straße, die das Tethys-Meer mit dem Polarmeer verband, zwischen Asien und Europa.

Klima und Vegetation

Am Beginn des Paläozän lagen die Temperaturen um etwa 2 bis 3 Grad niedriger als in der vorausgegangenen Kreidezeit, im späteren Verlauf der Epoche stiegen sie geringfügig an. Das Klima war insgesamt viel wärmer und feuchter als heute. In Grönland und Patagonien gedieh subtropische Vegetation und die Pole waren klimatisch gemäßigt. Am Ende des Paläozän kam es zu einem weltweiten, plötzlichen Temperaturanstieg von ca. 5 bis 6 °C [2]. Das Late Paleocene Thermal Maximum wurde durch eine plötzliche Freisetzung von Kohlenstoff bzw. Kohlendioxid ausgelöst. Als Quelle werden instabil gewordene Methanhydratvorkommen am Meeresgrund oder tauender Permafrostboden[3] diskutiert. Der Temperaturanstieg fand in einem Zeitraum von 1000 oder weniger Jahren statt. Die Rückkehr zum vorherigen Zustand des Klimas dauerte etwa 200.000 Jahre.

Fauna des Paläozän

Gekennzeichnet ist das Paläozän durch die Weiterentwicklung der ehemals kleinen Säugetiere, die nach dem Aussterben der Nichtvogel-Dinosaurier an der Grenze von Oberkreide zum Paläozän an Größe und Arten zunahmen. Auch die Vögel erreichten eine weltweite Verbreitung.

Einzelnachweise

  1. Karl Staesche: Paleozän oder Paläozän?. Zeitschrift der Deutschen Geologischen Gesellschaft, 115: 664-669, Stuttgart 1963, ISSN 0012-0189 Abstract
  2. J. Zachos, M. Pagani, L. Sloan, E. Thomas (2001). Trends, Rhythms and Aberrations in Global Climate 65 Ma to Present. Science 292: 686-693
  3. Robert M. DeConto, et. al. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 2012; 484 (7392): 87 doi:10.1038/nature10929

Literatur

  • Felix M. Gradstein, Jim Ogg, Jim Smith, Alan Smith (Hrsg.): A Geologic timescale 2004. 3. edition. Cambridge University Press, Cambridge u. a. 2004, ISBN 0-521-78673-8.
  • Eustoquio Molina, Laia Alegret, Ignacio Arenillas, José A. Arz, Njoud Gallala, Jan Hardenbol, Katharina von Salis, Etienne Steurbaut, Noël Vandenberghe, Dalila Zaghbib-Turki: The Global Boundary Stratotype Section and Point for the base of the Danian Stage (Paleocene, Paleogene, „Tertiary“, Cenozoic) at El Kef, Tunisia. Original definition and revision. In: Episodes. 29, 4, 2006, ISSN 0705-3797, S. 263–273.
  • Hans Murawski, Wilhelm Meyer: Geologisches Wörterbuch. 10. neu bearbeitete und erweiterte Auflage. Enke Verlag, Stuttgart 1998, ISBN 3-432-84100-0 (Enke-Taschenbuch).

Weblinks

Commons: Paleocene – Sammlung von Bildern, Videos und Audiodateien

Die News der letzten Tage

05.12.2022
Biochemie | Bioinformatik | Mikrobiologie
Wie man zwei Milliarden Jahre zurückgeht und ein altes Enzym rekonstruiert
Forscher:innen der Universität Leipzig haben ein Rätsel in der Evolution von bakteriellen Enzymen gelöst.
02.12.2022
Ethologie | Säugetierkunde
Markierungsbäume von Geparden sind Hotspots der Kommunikation – auch für andere Tierarten
Markierungsbäume sind für Geparde wichtige Hotspots der Kommunikation: Dort tauschen sie über Duftmarken, Urin und Kot Informationen mit anderen und über andere Geparde aus.
02.12.2022
Land-, Forst-, Fisch- und Viehwirtschaft | Ökologie
DBU: Weltbodentag am 5. Dezember
Mittlerweile leben acht Milliarden Menschen auf der Welt und Ernährungssicherung wird zu einer dringendsten Herausforderungen unserer Zeit.
01.12.2022
Physiologie
Altern Frauen anders als Männer?
Studien an Fruchtfliegen zeigen, wie das biologische Geschlecht die Wirkung des derzeit vielversprechendsten Anti-Aging-Medikaments Rapamycin beeinflusst.
29.11.2022
Ethologie | Zoologie
Geschlechterrollen im Tierreich hängen vom Verhältnis von Weibchen und Männchen ab
Wie wählerisch sollten Weibchen und Männchen sein, wenn sie einen Partner auswählen?
28.11.2022
Ökologie | Paläontologie | Säugetierkunde
Fossil aus dem Allgäu: Biber leben seit mehr als 11 Millionen Jahren im Familen-Clan
Die Hammerschmiede im Allgäu, Fundstelle des Menschenaffen Danuvius, ist eine einmalige Fundgrube für Paläontologen: Bereits über 140 fossile Wirbeltierarten konnten hier geborgen werden.
28.11.2022
Anthropologie | Neurobiologie
Arbeitsgedächtnis: Vorbereitung auf das Unbekannte
Beim Arbeitsgedächtnis, oder auch Kurzeitgedächtnis genannt, galt lange die Theorie, dass seine Kernaufgabe die aktive Speicherung von Informationen über einen kurzen Zeitraum ist.
28.11.2022
Meeresbiologie | Ökologie
Offshore-Windparks verändern marine Ökosysteme
Der Ausbau von Offshore-Windparks in der Nordsee geht voran, doch die Konsequenzen für die marine Umwelt, in der sie errichtet werden, sind noch nicht vollständig erforscht.
25.11.2022
Evolution | Genetik | Neurobiologie
Was haben Oktopus und Mensch gemeinsam?
Kopffüßler sind hochintelligente Tiere mit komplexem Nervensystem, dessen Evolution mit der Entwicklung von auffällig viel neuer microRNA verbunden ist.